
Stream Processing: The Matrix Revolutions

Romana Pernischova, Florian Ruosch,
Daniele Dell’Aglio, and Abraham Bernstein

University of Zurich, Zurich, Switzerland
{pernischova,dellaglio,bernstein}@ifi.uzh.ch, florian.ruosch@uzh.ch

Abstract. The growth of data velocity sets new requirements to de-
velop solutions able to manage big amounts of dynamic data. The set-
ting becomes even more challenging when such data is heterogeneous
in schemata or formats, such as triples, tuples, relations, or matrices.
Looking at the state of the art, traditional stream processing systems
only accept data in one of these formats.
Semantic technologies enable the processing of streams combining differ-
ent shapes of data. This article presents a prototype that transforms
SPARQL queries to Apache Flink topologies using the Apache Jena
parser. With a custom data type and tailored functions, we integrate
matrices in Jena and therefore, allow to mix graphs, relational, and lin-
ear algebra in an RDF graph. This provides a proof of concept that
queries written for static data can easily be run on streams with the
usage of the streaming engine Flink, even if they contain multiple of the
aforementioned types.

Keywords: query· continuous queries· streams· RDF· SPARQL· Flink·
linear algebra· relational algebra

1 Introduction

The processing of real-time information is getting more and more critical, as
the number of data stream sources is rapidly increasing. Often, reactivity is an
important requirement when working with this kind of data: the value of the out-
put decreases quickly over time. The state of the art to process unbounded data
reactively relies on stream processing engines which set their roots in database
and middleware research.

The processing of this type of data is also relevant on the Web, where several
use cases can be found in the context of Internet of Things (and the related Web
of Things), as well as in social network and social media analytics. An interesting
challenge that emerges from the Web setting is the data heterogeneity, as shown
in the example below.

A market research company is tasked with developing a system to analyze
the behavior of users of an online TV platform. In particular, they want to
investigate if certain images on TV programs cause customers to change TV
stations and if this behavior is similar among people who know each other.
This can result in customer specific programs and tailored advertisements that
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would induce the user to change the TV station or to stay on. Such an analysis
needs to combine data of different formats: the TV program (i.e. a stream of
images and sounds), the user activities (i.e. a relational stream), and the program
schedules and advertisement descriptions (i.e. a relational or graph database).
When performing this kind of analysis, it is common practice to represent the TV
program as a sequence of matrices, obtained by applying matrix specific functions
like the Fast Fourier Transform (FFT). The FFT computes the frequencies of the
different images that appear in the video, and it enables an association which can
be used in in-depth analysis that includes the behavior and relationship data.
The additional data has a different shape than the images. Such data is usually
given through tables or graphs.

To find the results, this data needs to be combined: the stream data has to
be integrated to identify images which were last seen before switching stations.
The data which contains the time spend watching a specific TV program is also
a stream, since it is unbounded.

To the best of our knowledge, today we lack scalable big data platforms
able to manage streams of different types in a reactive and continuous way. In
this paper, we make a first step in this direction by analyzing the problem of
processing three different types of data streams: matrices, relations, and graphs.
In other words, we want to investigate how to build a big data platform to process
streams containing matrices, tables, and graphs.

The combination of the different types of streams requires some common
data model or strategy of handling the heterogeneity while processing a query. In
addition to this, such a platform should allow users to issue complex queries and
enable them to exploit different types of operators depending on the underlying
data. A query language is therefore needed to capture the needs of the user,
including operators to express complex functions and combination of streams.
This language depends on the chosen strategy for the integration of the different
streams. Finally, the query has to be processed over the streams in a continuous
fashion and should return a sequence of answers which are updated according
to the input streams.

Our main contribution is a model to process streams of data in different
formats through relational and linear algebra operators. We exploit semantic
web technologies to cope with the format heterogeneity, and we adopt distributed
stream processing engine models as a basis to build an execution environment.
We show the feasibility of our approach through an implementation based on
Apache Jena and Flink.

2 Background

Processing data in the context of the Web is challenging, since it often inherits
the issues that characterize big data. It suffers from a variety of problems: data
from multiple sources has different serializations, formats, and schemas. The
Semantic Web has shown to be a proper solution to cope with these kinds of
issues: it offers a broad set of technologies to model, exchange, and query data on
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the Web. RDF [8] is a model to represent data. Conceptually, it organizes data in
a graph based structure, where the minimal information unit is the statement, a
triple composed by a predicate (the edge), a subject and an object (the vertices).
Subjects and predicates are resources, i.e. URIs denoting entities or concepts;
objects can be either URIs or literals, that are strings with an optional data
type, such as integer or date.

SPARQL [11] is a protocol and RDF query language, used to manipulate and
retrieve linked data. It uses sets of triple patterns, called Basic Graph Patterns
(BGP), to match subgraphs. The language is similar to SQL and uses keywords
like SELECT and WHERE to address the underlying concepts. To create graphs
and run queries, the framework Apache Jena 1 can be used.

When data is very dynamic and its processing needs to be reactive, solu-
tions like RDF and SPARQL may not suffice. Recently, several research groups
started to investigate how to adapt the Semantic Web stack to cope with veloc-
ity. In this context, it is worth mentioning the work of the W3C RDF Stream
Processing (RSP) Community Group 2, which collected such efforts and led sev-
eral initiatives to disseminate the results. Relevant results of this trend are RDF
streams, as a (potentially unbounded) sequence of time-annotated RDF graphs,
and continuous extensions of SPARQL, which enable users to define tasks, as
well as queries to be evaluated over RDF streams. Windows are introduced to
be able to treat the unbounded data, which enables calculations over the data
inside the window. Without windowing there is no data completeness and the
triggering of executions is problematic.

While the RDF Stream Processing trend introduced several notions to man-
age streams, only an initial effort has been dedicated to the creation of solutions
to cope with the volume of data generated in the Web context. The state of the
art in the processing of large amounts of streaming data relies on distributed
stream processing engines (DSPE). These platforms emerged as successors of
MapReduce frameworks and are developed to be deployed into clusters and to
run the processing of streams of data in a distributed fashion. Users are required
to design topologies, i.e. logical workflows of operations arranged in directed
acyclic graphs, which are taken as input by the DSPE and are deployed accord-
ing to the configuration settings and the hardware availability.

3 Related Work

Several studies investigated different types of data and how to combine them.
With regards to the three types of data we are considering, Figure 1 shows some
of the query languages we considered as foundations of this study.

Graph stream processing There is not a common definition of graph stream
processing. In the survey presented by McGregor [18], the focus is on processing
very large graphs: since they cannot be kept in memory, they are streamed

1 Cf. https://jena.apache.org/
2 Cf. https://www.w3.org/community/rsp/.
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into the system, and typical graph operations are run as on-line algorithms. A
different approach is the one taken by the RSP community group, which models
streams where data items are composed by graphs. In this case, the processing
consists of the execution of relational operators over portions of the stream (such
as aggregations), event pattern matching, or deductive inference processing [9].
None of the studies mentioned above investigated the integration of streams of
graphs with other types of streams.

Dealing with linear and rational algebras. SQL and SPARQL are two examples
of query languages to process tuples and graph-based data through relational
algebra. However, these kinds of operators can hardly be used to perform linear
algebra operations over matrices, such as transposition and calculating the deter-
minant. SciDB [22, 21] is one example of a system that bridges these two worlds.
This database stores arrays rather than tuples, and tasks are defined through
an SQL-like language called AQL (Array Query Language). Moreover, Andejev,
He, and Risch [3] introduce their prototype that can be accessed with Matlab.
It provides storage of arrays in an RDF graph and retrieval of the data and its
meta-information using SciSPARQL. SciSPARQL is an extension of SPARQL
that incorporates array operations within the query. The authors focus on the
integration of the different format rather than on stream processing. They make
the processing of large amounts of static data easier.

Another effort in such a direction is LaraDB [12], which proposes Lara that
combines relational and linear algebra. It uses a new representation, called as-
sociative table, into which relations, scalars, and matrices are recast. They map
operators from relational and linear algebra onto their functions and in this way
are able to express combinations of those.

Looking at query languages, LARA [14] relies on abstract data types and
local optimizations; however, there is no known system that would support such
a language. EMMA [2] is a language for parallel data analysis: its goal is to hide
the notion of parallelism behind a declarative language, which is realized using
monad comprehensions, which are based on set comprehension syntax. EMMA
introduces bags as the algebraic data types and enables the use of different
algebras by replacing the general union representation in a binary tree.

While there is an ongoing trend in research to combine linear and relational
algebra, we are not aware of studies that focus on a streaming setting.

Stream Processing Engines Research on stream processing sets its foundation in
the database and the middleware communities [7]. The former proposed models
and methods to process streams according to the relational model, like CQL [4],
while the latter took a different perspective, developing techniques to identify
relevant sequences of events in the input streams [15].

The research on this field got revitalized in the last years, as an evolution of
the MapReduce paradigm, which led to the development of distributed stream
processing engines (DSPE). Apache Spark Streaming [24] sits on top of the initial
Spark architecture, which implements batch processing. It focuses on stateless
operations and stateful windows. In contrast, Apache Storm [23] is natively a
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Fig. 1. Existing languages combining different algebras.

stream processing engine and supports query operations such as joins and aggre-
gations. It provides a low-level API which allows for the use of different program-
ming languages. Apache Flink [6] is optimized for cyclic or iterative processes.
Unlike Spark, it adopts a native streaming approach and can handle data that
does not fit into RAM. The Google Dataflow model [1] and its implementation
in Apache Beam 3 present a different approach: they aim to act as a façade, run-
ning a Dataflow-compliant topology in a DSPE, such as Apache Spark, Flink,
or Google Cloud Dataflow.

All of the above systems support windowing and typical relational algebra op-
erators. Such platforms also offer support to linear algebra operations (through
plug-ins and extensions). However, the topologies are specified through pro-
grammable APIs rather than a query language. Having such a tool would be
useful to let users with limited programming skills express their tasks through a
declarative language, without requiring users to code the topologies.

4 The Model

In this section, we describe the model we envision to use for processing queries
over heterogeneous streams. Figure 2 shows a logical representation of the model
with a highlight on the three main challenges we identified. The first one (de-
noted by 1 in the picture) relates to the data integration: given a set of streams
containing graphs, relations, and matrices, how can they be integrated in a com-
mon data model? The second one captures the user’s needs: what is a suitable
query language to let the user express tasks combining relational and linear al-
gebra operators? The third one puts the pieces together: how to execute the
queries over the input data? In the following sections, we discuss the challenges
and propose our solution.

3 Cf. https://beam.apache.org/.



6 R. Pernischova et al.

RDF Stream

Query
Modeling

Tuple StreamQuery 
Execution

Context/BKG

1

2

3

St
re

am
 In

te
gr

at
io

n

Fig. 2. Model of the proposed system for processing multiple and heterogeneous data
sources.

4.1 Stream Integration

The idea of integrating data by exploiting semantic web technologies is well-
known and consolidated [19]. This also holds in the streaming context, where
recent studies investigated how to integrate streams of relational or graph-based
data through RDF streams [5, 13, 17].

How to lift stream of matrices to RDF streams is still unexplored, and requires
some considerations. Given a matrix, there are ways to convert it into a graph-
based structure and consequently in RDF, e.g., each cell of the matrix can be
represented by a node, annotated with its position in the matrix, its value, and
properties relating it to adjacent cells. However, the representation of the matrix
data has a significant impact on the query language, which may require long
and complex descriptions to declare the linear algebra operations. Therefore, an
option is to keep the matrix data as is, and only transform it if and when the
query execution requires it. On this regard, the authors of LARA [14] point out
that the transformation of a matrix to a graph is possible, but the other way
around requires an ordering function. This drawback becomes relevant if users
want to execute matrix-specific functions on other data formats.

To append matrix data to an RDF stream, we defined some properties to
annotate the matrix and a custom data type to serialize its content. This al-
lows us to add matrices to streams as literal nodes, bringing advantages to the
execution of matrix-specific functions. Listing 1.1 shows an example of an RDF
stream encoding matrices. The snippet uses TriG as the serialization format, and
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keywordstylekeywordstyle keywordstyle1 : streamItem1 {
keywordstylekeywordstyle keywordstyle2 :m1 r l g : data ” [3 4 8 ] [ 8 7 2 ] [ 1 8 2 ]”ˆˆ r l g : matrix ;
keywordstylekeywordstyle keywordstyle3 r l g : columns 3 ;
keywordstylekeywordstyle keywordstyle4 r l g : rows 3 .
keywordstylekeywordstyle keywordstyle5 } { : streamItem1 prov : generatedAt 15 .}
keywordstylekeywordstyle keywordstyle6 : streamItem2 {
keywordstylekeywordstyle keywordstyle7 :m2 r l g : data ” [1 0 2 ] [ 9 6 2 ] [ 6 4 0 ]”ˆˆ r l g : matrix ;
keywordstylekeywordstyle keywordstyle8 r l g : columns 3 ;
keywordstylekeywordstyle keywordstyle9 r l g : rows 3 .
keywordstylekeywordstyle keywordstyle10 :m1 r l g : evolvesTo :m2.
keywordstylekeywordstyle keywordstyle11 } { : streamItem1 prov : generatedAt 17 .}

Listing 1.1. RDF example including a matrix node

the stream is encoded according to the model proposed in [17]. It contains two
stream items (represented as RDF graphs), generated at time instants 15 and 17.
Each stream item contains a matrix: data is a data type property having literals
of type matrix as the range; columns and rows are additional annotations. It
is worth noting that the snippet is compliant with the RDF model, making it
possible to process it with the usual semantic web related frameworks. Moreover,
the object representing the matrix can be annotated with additional properties
and can be linked with other resources.

4.2 Query Modeling

The choice of the data model has a significant impact on the design of the
query language. As explained above, our data model is compliant with RDF,
and carries additional information to account for the streaming nature of the
data and the presence of matrices. It follows that SPARQL is the best starting
point to design the query language. SPARQL is the W3C recommended query
language for RDF with operators to manipulate RDF graphs based on relational
algebra, similar to how SQL works on relations.

We need to accommodate matrix-specific functions.Having matrices as nodes
makes the retrieval easy because we can refer to them by exploiting variables
and accessing their data value. When looking at use cases, we are not interested
in representing the same data in multiple formats for the sake of achieving high
velocity in computation, but enabling the combination of data. With this think-
ing, we decided on adding the matrix-specific operators to the query language as
SPARQL functions. This solution does not lead to a custom version of SPARQL
since it is the recommended practice for this type of extensions [11]. An example
query is shown in Listing 1.2, where the contents of matrix resources are re-
trieved (Lines 7–8 and 10–11), their inverses computed (Lines 9 and 12), added
(Line 13) and emitted (Line 3).

Additionally, our query language needs a way to manage streams. Several
studies proposed extensions to SPARQL [9], with recent ongoing efforts to unify
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keywordstylekeywordstyle keywordstyle1 REGISTER STREAM : outStr AS
keywordstylekeywordstyle keywordstyle2 CONSTRUCTRSTREAM {
keywordstylekeywordstyle keywordstyle3 ?m1 : has Inve r s e [ ?m2 ? addInverse ] .
keywordstylekeywordstyle keywordstyle4 }
keywordstylekeywordstyle keywordstyle5 FROMNAMEDWINDOW : win ON : i n S t r [RANGE 1 STEP 1 ]
keywordstylekeywordstyle keywordstyle6 WHERE {
keywordstylekeywordstyle keywordstyle7 ?m1 rd f : type r l g : Matrix ;
keywordstylekeywordstyle keywordstyle8 r l g : data ? data1 .
keywordstylekeywordstyle keywordstyle9 BIND ( afn : i n v e r s e (? data1 ) AS ? i n v e r s e 1 ) .
keywordstylekeywordstyle keywordstyle10 ?m2 rd f : type r l g : Matrix ;
keywordstylekeywordstyle keywordstyle11 r l g : data ? data2 .
keywordstylekeywordstyle keywordstyle12 BIND ( afn : i n v e r s e (? data2 ) AS ? i n v e r s e 2 ) .
keywordstylekeywordstyle keywordstyle13 BIND ( afn : add (? inver se1 , ? i n v e r s e 2 ) AS ? addInverse ) .
keywordstylekeywordstyle keywordstyle14 }
Listing 1.2. Query that computes the inverse matrices (prefixes are omitted for
brevity).

them in a common and shared language. The introduction of windows and
streams cannot be managed by preserving the original semantics of SPARQL
entirely. In particular, the continuous evaluation requires an extension to the
original SPARQL semantics: the notion of evaluation time instant needs to be
included in the operational semantics to describe when and on which portion of
the stream the query should be evaluated [10]. In the example in Listing 1.2,
we are adopting the syntax proposed by the W3C RSP community group. An
output stream :outStr is declared (Line 1) and its items are defined as graphs
containing the matrices and their inverse(Lines 2–4). The window on Line 5 is
declared over a stream :inStr as a tumbling window of one stream item, i.e. the
query processes one stream item at a time.

4.3 Query Execution

The last step of our model consists in creating a DSPE topology that puts
together the data and the query described above. Given a (continuous) SPARQL
query, a way to generate a topology is shown in Figure 3. First, a parser creates
a logical query plan from the string of the SPARQL query. As usual, the logical
plan can be modified and optimized. Being a SPARQL query, the leaves of the
tree correspond to the Basic Graph Patterns, which are defined in the WHERE
clause. Those operators generate solution mappings, which are further processed
by the other operators.

To generate the topology, we exploit the logical plan, as highlighted in Fig-
ure 3. In the topology, the BGP operators are on the left, which are fed with
portions of the stream selected by the windows. Such BGP operators process
the data and push the outputs to the correct operators, which continue the pro-
cessing, sending the data towards the sinks. A converter traverses the logical
query plan and creates a task in the topology for each operator. In this way, it
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is easier to track what happens during the execution of the query. Moreover, the
decision to optimize the logical query plan allows us to exploit well-known tech-
niques from database research. The main drawback is the fact that our converter
may not find the best possible topology (regarding time performance). The con-
verter always creates tree-shaped topologies, and it cannot generate other types
of DAG.

SPARQL

REGISTER STREAM :outStr AS
CONSTRUCT RSTREAM { ?m1 
:hasInverse [rlg:data ?addInverse] . }
FROM NAMED WINDOW :win ON 

:inStr [RANGE 1 STEP 1]
WHERE {

?m1 rdf:type rlg:Matrix ;
rlf:data ?data1 .
BIND (afn:inverse(?data)

as ?inverse1).
?m2 rdf:type rlg:Matrix ;
rlf:data ?data2 .
BIND (afn:inverse(?data2)

as ?inverse2) .
BIND (afn:add(?inverse1,

?inverse2) as addInverse .
}

Operator 
Tree

Topology
Parser Converter

Si
nk

So
ur

ce
s

Fig. 3. Processing a query in a stream setting.

5 Implementation

To verify the feasibility of our model, we built a proof of concept. We started
from some existing frameworks: as a DSPE, we opted for Apache Flink [6]; we
used Apache Jena 4 to manage the SPARQL query; and we used JAMA [16] as
a library providing matrix-related functions. In the following, we highlight some
parts of our experience.

5.1 Query language

We used Apache Jena since it already provides tools to manage SPARQL, such
as a parser and implementations of its operators. Moreover, Jena offers a well-
documented API to extend its functions.

As explained in Section 4.2, our data model manages matrices through in-
dividuals of a Matrix class, a new literal data type that serializes its content.
Whenever a literal is specified as a matrix, the string is parsed into a matrix
data structure. Functions, that are specific for matrices, can be executed and the

4 Cf. https://jena.apache.org/.
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result can then be returned to the query. We implemented such functions ac-
cording to the SPARQL specification, listed in Table 1. We exploited the JAMA
Library from MathWorks and NIST [16] for the matrix data structures as well
as for the functions manipulating the matrices.

Function Returns

plus result of an addition
minus result of a subtraction
times result of an element-wise multiplication
times result of a multiplication by a scalar
times result of a matrix-matrix multiplication
divide result of an element-wise division
between partial matrix specified by indices
join result of joining two matrices with an operator
merge result of merging two matrices
transpose result of a transposition
rank calculated rank of the matrix
determinant calculated determinant of the matrix
inverse inverse of the input matrix
condition ratio of largest to smallest singular value
trace result of the sum of the diagonal

Table 1. Functions added to SPARQL using the Library JAMA [16]

In our current implementation, the query language does not support the
SPARQL extensions for streams, which is on the schedule for our future work.
At the moment, such information is provided as a set of parameters. It is worth
noting that this is not a limitation, since there are several prototypes that are
already showing the feasibility of these features [9].

5.2 Topology Creation and Execution

We decided to use Apache Flink as the basis for the execution environment,
since it offers a flexible and well-documented API. However, our approach can
be ported to other DSPEs, since the notion of topology is shared among them.

When defining a Flink topology, it is necessary to declare the type of data
that tasks exchange. Flink offers a set of native data types, among which Tuple
is the most prominent. It is a list of values, indexed by their position number.
We use Tuple for most of the data exchanges between nodes.

Given a query (partially defined through SPARQL, partially defined through
extra parameters), the conversion process derives a topology. For each SPARQL
operator, the process creates a task. At the moment the projection, FILTER,
BIND, LIMIT, and BGP operators are supported. Furthermore, our prototype
supports several window operators (since they are natively supported by Flink),
and the matrix-related operations in Table 1. Besides, the process extracts the
variable names, which are stored in a dedicated data structure. Tasks use this
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structure to manage the solution mappings as Tuple objects, inferring the posi-
tion of the variable content during the query execution.

Streams among tasks exchange Tuple objects; the only exceptions are the
tasks implementing BGP operators. The input of a BGP operator is a finite
sequence of stream items, expressed as a set of RDF graphs. They are merged
into a new RDF graph, which represents the window content, and the BGP
is evaluated over it. The resulting solution mappings are converted into Tuple
objects and are sent to the other tasks of the topology.

The conversion process returns a snippet of code with the topology descrip-
tion. This code can be fed into Flink, which instantiates the topology and
executes it over the input streams. The code of the project can be found at
https://gitlab.ifi.uzh.ch/DDIS-Public/ralagra/.

5.3 Limitations

While our prototype shows the feasibility of our model, it has several limitations.
The current implementation does not carry the system integration component,
i.e. the system expects to get as input one RDF streams compliant with the
data model described in Section 4.1. Our system is not able to receive multiple
streams and therefore, can not combine them on the fly. This is subject to future
work. As explained above, several studies show the feasibility of this component,
and we are going to implement it for the next version.

Moreover, we aim at automating the submission of the topology to Flink.
When the conversion process creates the topology from the input query, the
code snippet should automatically be injected into Flink. Techniques like Java
reflection5 or template engines may help in tackling this problem.

We are also working to extend our system to other SPARQL operators. At
the moment, it supports the most common SPARQL features, but it is important
to extend the coverage to a wider set of operators.

Finally, serializing matrices as plain strings is not the best solution in terms
of space and time to process them. In future works, we plan to explore other
serialization formats for matrices (and RDF streams carrying them), such as
Protocol Buffer and Apache Thrift.

6 Conclusions & Future Work

In this study, we proposed a model to handle data streams carrying different
types of data – relations, graphs, and matrices. We defined a data model by ex-
ploiting RDF, where streams are modeled as sequences of time-annotated RDF
graphs and matrices are represented as literals. We also described a query lan-
guage to manage such streams and to perform relational and linear algebra
operations over their items. We developed a proof of concept implementing the
most unique parts of the model.

5 Cf. https://docs.oracle.com/javase/tutorial/reflect/.
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Over the course of the next months, we will work to consolidate the proto-
type and to add the other parts, to have a full RDF stream processing engine.
We also aim at performing an extensive evaluation of the system. We are inter-
ested in studying the performance, the overhead introduced by our extensions
and to compare our system with other prototypes developed so far. It will also
be important to study more in depth to which extent our query language can
support the modeling of users needs and tasks.

Finally, our prototype is setting the basis to study the problem of distribu-
tion. So far, only a few studies targeted the problem of distributed RDF stream
processing engines, such as Strider [20]. The main difference in our setting is the
presence of matrices and operators over them, which requires different distribu-
tion strategies.
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