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ABSTRACT

The data produced by efforts such as life logging is commonly multi
modal and can have manifold interrelations with itself as well as ex-
ternal information. Representing this data in such a way that these
rich relations as well as all the different sources can be leveraged is a
non-trivial undertaking. In this paper, we present the first iteration
of LifeGraph, a Knowledge Graph for lifelogging data. LifeGraph
aims at not only capturing all aspects of the data contained in a
lifelog but also linking them to external, static knowledge bases in
order to put the log as a whole as well as its individual entries into
a broader context. In the Lifelog Search Challenge 2020, we show
a first proof-of-concept implementation of LifeGraph as well as a
retrieval system prototype which utilizes it to search the log for
specific events.
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1 INTRODUCTION

With the increase in both capability and availability of mobile
computation and sensing technologies, the means for capturing
a growing fraction of the human experience become increasingly
available. While a personal diary historically may have only con-
sisted of the manual and subjective textual recording of ones daily
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activities or thoughts, maybe occasionally accompanied by a photo-
graph or a memento of a particular occasion, modern sensors add
many layers of more objective data. Such sensor data can consist
of visual information about a person’s surroundings, represented
as a series of images or videos, augmented by various spacial and
contextual information, as well as the current state of the person
itself in the form of bio-metrics. The data generated this way is
inherently multi-modal and might have a complex structure of in-
terrelation between its various aspects. Another inherent property
of this kind of data is that it continues to grow over time as more
information about the recent past gets added. This leads to a need
for some retrieval mechanisms in order for the data to remain useful
for several application, such as memory augmentation. The Lifelog
Search Challenge [8] aims at addressing this problem by providing
an environment for the evaluation of retrieval systems capable of
handling such data which might be produced by the process of
life-logging.

In order to utilize the different modalities of the data effectively
for retrieval, it is important to capture the relationships between
them. Along a similar vein, it could be beneficial to associate the
lifelog data, which is of a temporal nature, with static facts about
the world in order to enrich the semantic context of the whole. The
most appropriate data structure to meet these requirements is a
graph.

In this paper, we present LifeGraph, a Knowledge Graph for
Lifelog Data. LifeGraph is designed in such a way that it captures the
internal relations of the various data modalities contained within
a lifelog while simultaneously linking to large static knowledge
bases in order to enrich the semantic context of the lifelog.

The remainder of this paper is structured as follows: Section 2
gives a brief overview of related work on both Knowledge Graphs
and lifelog retrieval. Section 3 discusses the construction of Life-
Graph while Section 4 outlines how it can be used for retrieval.
Section 5 then provides some details on the system prototype which
is used in the Lifelog Search Challenge before Section 6 concludes.

2 RELATED WORK

In the comparatively short time the Lifelog Search Challenge offers
a common basis for the evaluation of retrieval approaches geared
towards lifelog data, participating teams have already begun to
explore several aspects of the retrieval process. Multiple teams
started out adapting their retrieval approaches originally developed
for the Video Browser Showdown [25], an interactive video retrieval
campaign, to the similarly structured lifelog retrieval task, which
lead to a strong focus on the visual aspects of the lifelog data [16, 18,
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22]. Other systems have experimented with novel user interaction
approaches. The Exquisitor system [13] uses an interactive learning
approach to formulate and refine queries based on a visual relevance
feedback scheme where a user can mark retrieved results as either
relevant or not, thereby iteratively approaching the desired result.
The system presented in [5] meanwhile successfully uses a virtual
reality user interface for the efficient interaction with retrieval
results as well as the presentation of them. So far however, little
work has been done on the enrichment of the lifelog data itself
by the use of suitable data representations. We aim to start the
exploration of this direction by the introduction of Knowledge
Graphs and Semantic Web technologies into the area of lifelog
retrieval.

The core idea of the Semantic Web is to have a Web that is ma-
chine processible [1], which was the driving motivation behind the
development of the Resource Description Framework (RDF) [4]. In
RDF, facts are stated as subject-predicate-object triples, wherein the
subject and object are resources and the predicate expresses a rela-
tionship between them. Since the Web is distributed, resources and
predicates are identified globally by means of prefixes. Furthermore,
the Web Ontology Language (OWL) permits to define constraints on
triple elements. In combination, RDF and OWL provide the means
to build ontologies and tools for compliance checking and logical
reasoning [11]. In recent years, the idea of Knowledge Graphs (KG)
was popularized. Although there is no prevalent definition of the
term, KGs are mostly an interpretation of RDF triples as a networks
of facts, whereas nodes (resources) represent real-world entities.
Contrasting ontologies, they rarely employ constraints, meaning
that reasoning tools cannot be applied [12]. Instead, they are often
a product of a (semi-)automated information extraction process.
For example, DBpedia was constructed by processing Wikipedia
info boxes [15]. The capability to access information in a KG is
provided by the SPARQL query language which allows to define
graph patterns that are matched against [9].

3 KNOWLEDGE-GRAPH CONSTRUCTION

This section outlines the construction procedure of the LifeGraph
as well as the data sources and annotation methods used.

In this context, a knowledge graph (KG) is a set of triples (s, p,0),
where s and o are two resources connected by a predicate/relation
p. As an example, (:entry :image "“xsd:string) is the triple
describing the schema, where an entry has the relation image and
the object is a string of the image identifier. A KG consist of two
sets — TBox and ABox [2]. The TBox (Terminology Box) consists
of the schema: range and domain restrictions as well as defini-
tions of classes and relations. The ABox (Assertion Box) holds the
individuals or population as defined in the TBox. Therefore, the
TBox corresponds to a database schema, whereas the ABox can be
compared to the tables within the same database.

3.1 Data Sources

In order to maximize intelligence, we fuse information from mul-
tiple sources that will be briefly described. Naturally, our starting
point is the core image data set provided by the organizers (and
obtainable from the LSC website) [7]. In the following, we will ex-
plain how we linked it to two additional data sources which will be

described here first: the "Classification of Everyday Living" (COEL)
[3] and Wikidata [26].

COEL is part of our graph schema and represents events that
may occur in our everyday lives in a four-level hierarchical struc-
ture. More than 5’000 elements are organized in just over 1’000
subclasses which are in turn classified in almost 200 categories. On
the top-most level, everything is divided into 32 clusters. COEL
follows some design principles aiming to make sure that the model
is complete (exhaustively so) as well as discretely hierarchical and
also distinctive at the same time.

Wikidata is a sister project of Wikipedia and contains its informa-
tion in a "Web of Data" following several design principles. While
continuously evolving due to its open editing approach, Wikidata
serves as an easily accessible source for secondary information
(i.e. facts published elsewhere). In providing an API (for SPARQL
queries) and by not only connecting its elements among themselves
but also to other knowledge bases (e.g. WordNet, Encyclopzedia
Britannica Online) it enables enriching keywords with additional
semantic information.

3.2 Graph Schema

Meta-data and detectables. For defining a graph structure, we
considered different aspects. First of all, the lifelog images and their
meta-data had to be structured in a meaningful way to enable an
intuitive search over the entries. An additional challenge posed the
fact, that entries in the meta-data are in the interval of a minute
while pictures were taken in regular but different intervals. There-
fore, multiple pictures can be associated with the same meta-data
entry. To model this in a meaningful way, we consider every im-
age to be an instance of class : entry. Attributes, such as time, day,
month, time of day, activity, etc., which are entered in the meta-data
are associated with an :entry. The relation : image then connects
the image id with the entry. In this simple way, we associate the
meta-data with the images. Because of the difference in timing of
meta-data entries and images, there will be multiple images associ-
ated with one meta-data entry. We duplicate the meta-data entry so
that each image has the corresponding information available. This
choice of design arose from the goal of the challenge, which is the
retrieval of images and not meta-data. Therefore, the images are
the center point of the schema.

Besides the meta-data, we need to associate objects detected
in the images with the corresponding images in the graph. This
will enable us to search for entries in the lifelog showing specific
:detectables. A detectable is anything we can detect in the images,
such as physical objects or specific scenes or settings. Using the
predicate :detected, we associate the detectable with the entry.
Therefore, the schema triple looks the following way: (:entry
:detected :detectable). Each detectable will be modeled as an
instance of the class :detectable.

COEL. As mentioned above, the second part of the schema is
COEL [3], which is a hierarchical structure of activities a person
potentially does. Since this is a terminology and not an ontology,
we first convert COEL into the Resource Description Format (RDF)
graph. During this conversion, we model the terms in COEL as
classes and keep the hierarchy intact by defining sub- and super-
classes with the predicate owl:SubClassOf. The lowest level of
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concepts, called elements, are added as individuals of the subclass
they are part of. In triple format, this looks like the following: : e1
rdf:type :c1, with : el being a specific element and : c1 denoting
a subclass which the element is part of.

At first, these two structures are not connected with each other.
The connection between the meta-data and COEL will inherently
happen though the images.

3.3 Linking

We extend COEL by linking it to Wikidata entities in two ways.
First, we create a mapping between COEL concepts and Wikidata
entities. Such a mapping allows us to use both knowledge bases
in conjunction and to expand the number of classes. Second, we
populate the resulting schema with instances from Wikidata. This
increases the number of detectable objects as it links activities with
objects typically involved in the activity.

Since the two data sources have not yet been linked, we employ
a semi-automatic mapping procedure to derive a mapping between
them. The mapping procedure is based on text literals which are
either COEL concept names or labels attached to Wikidata entities
(via rdfs:label and skos:altLabel predicates). For each COEL concept,
we retrieve all entities from Wikidata that have a similar label,
ignoring special entities (e.g. Wikidata disambiguation pages). If a
single entity with a perfectly matching label is found, that entity
is linked to the COEL concept automatically. We review the link
manually in cases where multiple entities match the same COEL
concept or where the labels match approximately. Similarly, we
review COEL concepts for which no entitiy was retrieved. Such
cases mostly occur at subclass level where COEL describes activities

("drying your hair") which have very limited coverage in Wikidata.

We leave cases without corresponcence unlinked.

The set of linked Wikidata entities is further expanded with
classes along Wikidata’s class hierarchy (wdt:P279) and Wikipedia’s
categories (wdt:P373, wdt:P910). Furthermore, we populate the
resulting schema with instances. For this, we collect all Wikidata
entities that are an instance (wdt:P31), a part (wdt:P361), or a use
(wdt:P2283) of a class in our schema.

It is worth noting that the resulting structure is a graph rather
than a hierarchy, since concepts from different locations in the
COEL tree map to the same Wikidata entity if they have the same
label. For example, Hair is mapped to the same entity whether it is
part of COEL:Personalcare or COEL:Childcare.

3.4 Image annotation

In addition to some freely available pretrained object localizers [20,
21] we construct an array of binary classifiers to detect the presence
of alarge number of semantic concepts in the images of the provided
dataset. These classifiers use the output of the last hidden layer of a
ResNet50 [10] instance which has been pretrained on ImageNet. For
their training, we use a combination of several image datasets [14,
17, 27] in order to obtain a diverse set of labelled semantic concepts
which can be meaningfully linked to other nodes in the graph
structure.

3.5 Temporal Interpolation

Since the temporal aspects of the data might contain gaps due to
incomplete manual annotation, missing detections, or similar rea-
sons, we perform a temporal interpolation step after automatically
annotating the images. This process looks for two sequences of
entries which are associated with the same concept but interrupted
by a sufficiently small gap. In such cases, we assume that, in re-
ality, there is actually only one continuous sequence of entries to
which the concept should be associated rather than two following
temporally closely to each other. Consequently, the two adjacent
sequences are merged by associating the relevant concept to the
entries comprising the gap. For sake of completeness, we not only
apply this process to the annotations generated by the process de-
scribed in Section 3.4 but also to the meta-data which was provided
with the competition dataset.

4 RETRIEVAL

This section provides some details on how retrieval is performed
in the LifeGraph.

4.1 Query formulation and expansion

To specify a query, a user can select an arbitrary number of tags
they would deem to be relevant. Each of these tags is associated to a
node in the graph. However, since not all tags are directly associates
with individual log entries, the graph is traversed starting out from
each of the selected tags until either a maximum number of directly
associated nodes or a maximum expansion depth is reached. Nodes
in the graph which can be directly associated with log entries are
predominantly instances of detectable objects or concepts extracted
from the visual part of the lifelog dataset.

4.2 SPARQL Queries and Templates

SPARQL [19] is a graph based query language for retrieval of parts
of an RDF graph and based on pattern matching. A pattern is a
construct of triples where any part of the triple can be replaced by a
variable. They can be of varying length while also defining optional
parts. The triple store then searches for triples or sets thereof that
correspond to the specified pattern. In the current case, we are
interested in retrieving the images, and the pattern will need to be
defined in relation to the images. Therefore, the SELECT statement
holds the impact identifier. The WHERE section contains the triple
pattern that will be matched by the triple store. An example can be
seen in Listing 1. If we want to search for images where either a cup
or coffee was detected, we can use the shown template. We would
then substitute ?thingl with :cup and ?thing2 with :coffee.
The keyword UNION means, that the query will return results that
either match the first, the second, or both statements.

The query in Listing 1 is one of many templates we are going to
construct which will allow the user to choose from different types of
tags (detectables, activities, meta-data). Depending on the selection,
different templates are filled and executed to return images. Our
goal is to keep the templates as simple as possible and rank the
returned images based on occurrence within the results. Images
that are returned by multiple queries will be ranked higher than
those returned by only one.
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PREFIX rdf: <http://www.w3.0rg/1999/02/22 —rdf—syntax—ns#>

| PREFIX lsc: <http://www.ddis.ch/lsc—schema#>
SELECT ?img
WHERE {
?entry Isc:image ?img .
{
?entry Isc:detected ?thingl.
?thing1 rdf:type Isc:detectable .
}
UNION
{
?entry Isc:detected ?thing2 .
?thing2 rdf:type Isc:detectable .

}

Listing 1: Example of a SPARQL Query returning image
identifiers for ?thing1 = :cup and ?thing2 = :coffee. Returned
images contain a cup or coffee tag available for the image.

PREFIX rdf: <http://www.w3.0rg/1999/02/22 —rdf—syntax—ns#>

| PREFIX lsc: <http://www.ddis.ch/lsc—schema#>
SELECT ?img
WHERE {
?entry Isc:image ?img .
?entry Isc:detected ?thingl .
?thingl rdf:type Isc:detectable .
OPTIONAL
{
?entry Isc:detected ?thing2.
?thing2 rdf: type Isc:detectable .

}

Listing 2: Example of a SPARQL Query returning image
identifiers for ?thing1 = :cup and if available also for ?thing2
= :coffee

PREFIX rdf: <http://www.w3.0rg/1999/02/22 —rdf-syntax—ns#>

PREFIX lsc: <http://www.ddis.ch/lsc—schema#>
SELECT ?img
WHERE {
?entry Isc:image ?img .
?entry Isc:detected ?thingl.
?thingl rdf:type Isc:detectable .
?entry Isc:detected ?thing2.
?thing2 rdf: type Isc:detectable.

}

Listing 3: Example of a SPARQL Query returning image
identifiers for ?thing1 = :cup and for ?thing2 = :coffee. Both
tags need to be present for the image to be returned.

1

PREFIX rdf: <http://www.w3.0rg/1999/02/22 —rdf-syntax—ns#>

PREFIX lsc: <http://www.ddis.ch/lsc—schema#>
SELECT ?img
WHERE {
?entry Isc:image ?img .
?entry Isc:detected ?thing .
?thing rdf:type Isc:detectable .
FILTER ( ?thing IN (:cup, :coffee, :tee, :hotdrink))

Listing 4: Example of a SPARQL Query returning image
identifiers for a list of tags.

Since it is better to return more images rather than excluding
some, all images which have matched at least one of the selected
tags will be shown to the user. The user also has the possibility to
search for two tags, of which both need to be associated with an

image, for example plant (detectable) and afternoon (time of day).

However, when the user wants matches to more than one tag, the
types of the tags need to be different from each other. Tags within
one category will always be matched with the previously described
UNION keyword.

There are more possibilities of queries, which could be applied
in this context. For example, letting the user choose how tags are
combined, we also envision the usage of OPTIONAL (Query 2) or
simply only graph patterns without additional keywords (Query 3).
With the OPTIONAL keyword, the first graph pattern has to match
for the query to return the results, but the second part would be
considered optional. Therefore, results would be returned, if they
match the first part and the additional matches would also be re-
turned, if available. In case no match is found for the OPTIONAL
part, it will remain empty in the response. Lastly, when using no
keywords all patterns need to be matched.

The last query presented in 4 is the simplest but still very power-
ful. It allows to query for images that contain one or more detected
items from a list. An image and the detected item will be returned
for every list of tags, if the image is tagged with any of them. In the
case of cup and coffee, there would be two results returned for an
image that has both the tag cup and coffee. On the other hand, the
image would be returned once, if it has one tag, either cup or coffee.
By returning not just the image identifier (?img) but also the tag
(?thing), we are able to distinguish the returned images based on
how many of the tags of the list it contained. This would enable a
ranking of the images for display in the front-end.

We can summarize that from Query 1, to Query 2, and Query 3,
the first is the least strict and the third is the most restraining. The
last example, Query 4, is the most expressive and allows for a wider
range of applications and also number of tags.

4.3 Filtering

Once an initial set of images has been found, ranked, and returned
to the user, filtering comes into play. The filtering does not touch the
underlying architecture anymore but rather happens in the front
end directly, using previously introduced functionality [22, 24].
Filtering over the meta-data but also over the previously queried
tags is possible.

5 IMPLEMENTATION

Our retrieval system prototype consists of several components. A
triple store is responsible for storing the LifeGraph and executing
SPARQL queries on it. The query engine sits on top of the triple
store and performs the translation between the queries specified
by the user interface and the types of queries that can be eval-
uated by the triple store. The browser-based user interface used
for this prototype is a modified version of vitrivr-ng [6] which we
re-purpose from the vitrivr [23] content-based multimedia retrieval
stack, since it has been shown to be useful for effective retrieval of
lifelog data [22]. The user interface as well as all the visual content
is served by a local web server. The entire system stack is illustrated
in Figure 1.

6 CONCLUSION

In this paper, we introduced LifeGraph, a first attempt to represent
complex interrelated data captured in the context of life logging
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Figure 1: System diagram

using a knowledge graph, as well as some methods how it can be
used for retrieval of lifelog data. We see the current iteration of
LifeGraph as more of a proof-of-concept rather than a complete
solution, usable by life loggers in general. This work could however
lay the foundation for the construction of a specialized ontology
which contains everything necessary to describe not only individ-
ual lifelog entries and their interrelations but also their context.
Assuming the support of the growing life logging community such
data could enrich future lifelog data-based applications.
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