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Ontologies are becoming a key component of numerous applications and research fields. But knowl-
edge captured within ontologies is not static. Some ontology updates potentially have a wide ranging
impact; others only affect very localised parts of the ontology and their applications. Investigating
the impact of the evolution gives us insight into the editing behaviour but also signals ontology
engineers and users how the ontology evolution is affecting other applications. However, such research
is in its infancy. Hence, we need to investigate the evolution itself and its impact on the simplest of
applications: the materialisation.

In this work, we define impact measures that capture the effect of changes on the materialisation.
In the future, the impact measures introduced in this work can be used to investigate how aware the
ontology editors are about consequences of changes. By introducing five different measures, which
focus either on the change in the materialisation with respect to the size or on the number of changes
applied, we are able to quantify the consequences of ontology changes. To see these measures in action,
we investigate the evolution and its impact on materialisation for nine open biomedical ontologies,
most of which adhere to the EL++ description logic.

Our results show that these ontologies evolve at varying paces but no statistically significant
difference between the ontologies with respect to their evolution could be identified. We identify three
types of ontologies based on the types of complex changes which are applied to them throughout their
evolution. The impact on the materialisation is the same for the investigated ontologies, bringing us
to the conclusion that the effect of changes on the materialisation can be generalised to other similar
ontologies. Further, we found that the materialised concept inclusion axioms experience most of the
impact induced by changes to the class inheritance of the ontology and other changes only marginally
touch the materialisation.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Change are inevitable. Especially when capturing our growing
nowledge, adaptation becomes necessary [1]. Therefore, ontolo-
ies like the Gene Ontology (GO) [2] and the National Cancer
nstitute Thesaurus (NCIT) [3] change over time to adapt the
epresentation to the evolving knowledge. Experts or commu-
ities usually take care of the maintenance of these ontologies
y adding new knowledge and removing or updating outdated
nd wrong information. For example, GO evolves as experts add
ew gene annotations of living organisms. Researchers then apply
unctions to this graph, such as functional enrichment analysis
4,5], mRNA expression, proteomics, genetic, or DNA methylation
ata analysis [6].
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In this study, we focus on a general function—the materialisa-
tion. It is a deterministic logical entailment, which infers implicit
statements. We investigate the materialisation because it is a
common calculation used on ontologies to check for consistency
but also for subsequent further tasks such as querying and rec-
ommendations. A small change in a class definition can have a
notable impact on the ontology, significantly vary the number of
materialised axioms, or even its consistency. However, not every
change in the ontology leads to significant changes in the mate-
rialised graph. What are the consequences of ontology evolution
on functions like the materialisation over time? Moreover, how
does this change in materialisation further impact other tasks and
applications?

A materialised ontology is larger than the original and its
computation may consume considerable amounts of resources.
As a consequence, indicating that a change may cause a poten-
tially significant difference in materialisation would signal the
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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necessity for re-computation. This could lead not only to the re-
computation of the materialisation but also to other results and
calculations on top of the materialisation. Hence, we believe that
curators and users need to be aware of the evolution and its
consequences.

We first analyse ontology evolution and the applied changes
sing the following nine Open Biological and Biomedical Ontolo-
ies (OBO):

• NCIT [3],
• GO [2],
• Fission Yeast Phenotype Ontology (FYPO) [7],
• Uber-anatomy Ontology (UBER) [8],
• Human Disease Ontology (DOID) [9],
• Pathway Ontology (PWO) [10],
• Rat Strain Ontology (RSO) [11],
• Apollo Structural Vocabulary (ASV) [12], and
• Plant Trait Ontology (PTO) [13].

and investigate the following research questions:

Q1.1. What is the relation between the number of changes
applied to the ontology and its size for open biomedical
ontologies, the evolution of which is available online?

Q1.2. What are the most common complex changes which are
applied to open biomedical ontologies, the evolution of
which is available online?

We consider the growth of the ontologies in different aspects
ike number of triples or axioms, and the changes between con-
ecutive versions themselves. We make use of the classification
f complex changes provided by COnto-Diff [14] to also assess the
volution and the applied changes in more detail.
Due to the lack of measures to compare materialisations, we

irst define such an instrument. Therefore, our second research
uestion is:

Q2. What are measures that are simple to compute and allow to
assess the impact of the ontology change on the ontology’s
materialisation?

e focus on measures that are meaningful in quantifying the
mpact, and at the same time they require a limited amount of
alculation to compare two materialised ontologies. Our goal is to
e able to compute these measures in an online environment like
rotégé [15], without negatively affecting the usability of such
ools. Impact measures can be added to the ChImp plugin [16] to
iden the range of information displayed to the ontology editors
hile they are changing an ontology. We define two sets of

mpact measures to be able to capture different relations between
he changes and the impact on the materialisation. The first set
xhibits the consequences of ontology changes with respect to
he size of the materialisation. The second set focuses on the
hanges to the materialisation with respect to the underlying
hanges to the ontology.
Then, we calculate the impact measures for the selected on-

ologies and compare them. Given the previous evolution analy-
is, we want to identify relevant aspects of changes and change
ypes for the impact. Therefore, our last research question is:

Q3. What aspects of changes and which complex change types
have the largest share in the impact on the materialisation?

We found that a distinction between ontologies based purely
n size is not statistically significant. Nonetheless, we observe a
ery high correlation between the number of changes and impact
or all ontologies. Additions of leaves, moves, and changes of
ttribute values are the three most common change types in

he evolution of the nine selected ontologies. Further, we find

2

Table 1
Definitions of symbols used in Fig. 1 and in the definitions of metrics in
Section 3.1.
Symbol Description

Oi Ontology at time i
δ+

i = Oi+1\Oi Added axioms
δ−

i = Oi\Oi+1 Removed axioms
Mi = mat(Oi) Materialisation of Oi , where Mi does not contain Oi
∆+

i = Mi+1\Mi New, inferred axioms part of Mi+1 but not in Mi
∆−

i = Mi\Mi+1 Old, inferred axioms part of Mi but not in Mi+1
impact(Mi,Mi+1) Quantification of the difference between Mi and Mi+1

that concept inclusion axiom changes have the highest impact
on the materialisation. Most ontologies only experience impact
by changes to the class hierarchy. At the same time, the impact
is observed on the materialised class hierarchy as well. Most
other changes do not have a significant influence on the ma-
terialisation at all. Interestingly, complex change actions do not
correlate with the impact on the materialisation. The location
of the changes (subclass changes) is much more important to
determine if changes will have a large impact or not.

In conclusion, this study presents the following contributions:

• the definition of five novel impact measures, which capture
the effect of changes on the materialisation, and

• an investigation of the evolution of nine OBO ontologies and
their evolution’s impact on the materialisation, where we
found that:

– the size of an ontology does not have a statistically
significant effect on the number of changes applied,

– addition of leaves, moves, and changes of attribute
values are the most common complex change action
types,

– the impact on the materialisation is minimal compared
to the size of the ontologies,

– the impact correlates highly with the (absolute and
relative) number of changes applied for all ontologies,

– and, lastly, most changes are applied within the class
hierarchy which also leads to the most impact being
on the class hierarchy as well.

This paper is structured as follows. Section 2 explains and
formalises the problem with the corresponding background infor-
mation and related research. We define the ontology and impact
measures in Section 3 and explain our calculation approach. In
Section 4, we introduce the ontologies in detail. We analyse and
discuss the evolution as well as the impact on the materialisation
in Section 5 and address limitations and future work in Section 6.
Lastly, Section 7 concludes this work.

2. Background and related research

This section formalises the problem of ontology evolution and
its impact on downstream tasks. A visualisation based on our
previous work [17] is shown in Fig. 1. We explain it in the
remainder of this section.

We also introduce the background to the various aspects of
Fig. 1, as well as the related research. First, we formally define
ontologies. Then, we introduce the materialisation task and how
it can be executed. The next step is the topic of ontology evolution
as well as the formal definition of streams upon which the visual-
isation and definition from [17] are based. Lastly, we present the
topic of impact of evolution and we discuss the related research.
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Fig. 1. General model of the problem setting with Oi being the ontology at time
, δi the changes on Oi which lead to Oi+1 , mat(·) the operation executed on the
ntology, in our case the materialisation, Mi the result, and impact(Mi,Mi+1) the
mpact. All symbols are defined in Table 1.

.1. Ontology and EL++

We use the definition of ontology proposed by Baader, Brandt,
nd Lutz in [18]. Such ontologies are expressed through the de-
cription logic EL++. OWL 2 EL, which adheres to EL++, is a OWL
profile suited for ontologies with a very large number of con-
epts organised in complex structures. In EL++, the consistency
hecking and class expression subsumption tasks can be executed
n polynomial time. As such, it is often used in biological and
iomedical ontology engineering. When talking about ontologies
n this work we refer to such EL++ ontologies and denote to one
ntology with O.
An ontology is made of two sets—the TBox and the ABox. A

Box consists of four types of axioms: general concept inclusions
GCIs), role inclusions, domain restrictions, and role restrictions.
he ABox includes concept and role assertions. We use T and A
o refer to the TBox and ABox, respectively.

As in other description logics, EL++ distinguishes between
lasses, individuals, and properties. The set of classes is composed
f classes defined in the TBox and used as types in the ABox.
ndividuals are entities belonging to classes. The set of properties
ncludes those defined in the TBox, and used in the ABox to relate
ndividuals.

.2. Materialisation and reasoners

Materialisation is the process of calculating the implicit state-
ents in an ontology. This is done by taking into account both

he ontological language used to define the ontology as well
s the axioms and assertions stored in the ontology. We define
he materialisation mat(·) as a function that is applicable to an
ntology and produces the result M , as shown in Fig. 1. In this
ork, the materialisation M does not include O.
There are various reasoners that can perform a materialisation

nd they focus on different ontological languages, and implement
istinct algorithms. HermiT [19] and FaCT++ [20] are two exam-
les of general purpose reasoners that handle OWL 2 DL. The
ermiT reasoner can check for consistency as well as identify
ubsumption relationships [19]. However, the reasoning becomes
ncomplete if the ontology contains property chains or transitivity
xioms. FaCT++ is another reasoner for expressive description
ogic [20]. FaCT++ and HermiT deploy different reasoning algo-
ithms to obtain the materialisation but are expected to return
he same results. There are also reasoners which are specifically
eveloped to support ontologies in EL++ logic, such as ELK [21],
EL [22], and TrOWL [23]
Lastly, there are incremental reasoners, such as RDFox and Pel-

et, especially when dealing with ontology evolution. Incremental
easoning is enabled by reusing previous results when dealing

ith dynamic knowledge bases. RDFox is a triple store which

3

supports parallel datalog reasoning and incremental updates to
the materialisation [24]. Pellet is a sound and complete OWL-DL
reasoner that supports reasoning with individuals, custom data
types, and other unique features [25].

2.3. Ontology evolution

We define an evolving ontology O as a sequence
(O1,O2, . . . ,Oi,Oi+1, . . .), where Oi denotes the ontology ver-

ion i. This definition of evolving ontology is similar to the one
f ontology stream proposed by Ren and Pan in [26]. Let Oi and

Oi+1 be two consecutive versions in O. The update of O between
i and i + 1 is described by a set of changes δi. δ indicates a set of
edits that are authored by one or more agents, such as ontology
engineers, curators, or maintenance bots.

Ontology evolution is a well studied and understood topic.
Zablith et al. [27] survey various evolution processes. In addi-
tion, Hartung et al. [28] show the different tools for managing,
exploring, and propagating changes on ontologies. Both focus on
how ontologies are maintained. Our study is orthogonal to the
mentioned ones, since they do not consider the consequences
of the evolution and exclusively look at the need for updates
as well as how these are conducted. Rashid et al. [29] use the
evolution of a knowledge graph to assess its quality by examining
consistency, completeness, persistence, and historic persistence.
Quesada-Martínez et al. [30] use the OQuaRE framework [31]
to investigate the evolution and quality of eight OBO Foundry
ontologies.

The study of ontology changes and change classification is
orthogonal to ontology evolution research. OntoDiff [32] is a tool
that enables the user to detect changes between two versions of
the same graph. It works by identifying semantically equivalent
elements between the ontologies. Klein and Noy [33] developed
an ontology describing 80 basic changes. They also introduce a
notion of complex changes, showing how they help in the in-
terpretation of consequences for data and entities. Papavasileiou
et al. [34] propose and evaluate a new approach based on a
language to express changes, together with an algorithm to com-
pute changes between versions. They require the ontology to be
in RDF(s), which is usually not the case for biomedical ontolo-
gies. COnto-Diff [14] and the integrated CODEX [35] both detect
changes and group low level changes into high level change
actions. They provide a simple classification and a rich action
semantics. In our analysis, we will use COnto-Diff to classify
changes into complex changes, because it is specifically targeted
towards the biomedical domain.

Flouris et al. [36] distinguish between evolution, debugging,
and other aspect of ontology change and provide an overview of
research in each of the areas. Noy and Klein in [1] already made
clear that ontology evolution is not the same as database schema
evolution. They point out that an evolution’s consequences are
generally unknown because of the decentralisation of ontologies.
With this work, we aim to lessen the huge gap consisting of the
unknown consequences of ontology evolution by quantifying the
impact of evolution. Potentially, our research could lead to better
informing both sides – the developers and the users – on the
issues of ontology evolution and its consequences.

There is also research that focuses on the prediction of ontol-
ogy evolution [37–39]. Pesquita et al. [37] focus on GO and learn
a model predicting which parts of GO will undergo annotation
change in the next version. Similarly, Cardoso et al. [38] exploit
the evolution of biomedical ontologies and various features to
build predictive model to identify concepts that will change in
the future as well as the type of changes. Also, Meroño et al. [39]
go into this direction of predicting changes and expand the work
of Pesquita et al. [37] with semantic drift for the detection and
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prediction of changes. These three studies differ from our re-
search since they do not consider consequences of the changes,
but they predict where changes will happen in the next version of
an ontology. Their models could be used to help ontology editors
with their maintenance task, whereas our research would inform
them about consequences of the applied changes.

2.4. Evolution impact

Given an ontology Oi, mat(Oi) creates the result Mi. Applied
o an evolving ontology O, we have an evolving sequence of
esults M = (M1,M2, . . . ,Mi, . . .). Given Oi and Oi+1, the re-
spective results Mi and Mi+1 can be the same when the changes
δi do not affect the result of mat(·), or they can differ to a
varying degree. We model this comparison through the function
impact(Mi,Mi+1), which represents the impact that the evolution
had on the results of mat(·).

One form of impact from ontology evolution is semantic drift.
s an ontology evolves, the meaning of names within the ontol-
gy can shift, causing new alignments between concepts and real
orld things. Therefore, semantic drift is a form of impact of the
ntology evolution.
Originally, this type of impact is used in linguistics, where

ords drift semantically over time. Wegmann et al. [40] recently
nvestigated different forms of semantic drift and how to measure
t using word embeddings and neighbourhood comparisons. For
ntologies, SemaDrift [41] is a tool to calculate various semantic
rift measures between versions of ontologies. It applies differ-
nt methods of calculation and distinguishes between an exact,
nexact, and hybrid ontology matching approach. OntoDrift [42]
uilds on top of SemaDrift, addressing some of their shortcomings
y including more aspects in their semantic drift calculations. A
otion of semantic drift has also been investigated in the context
f code repositories and bug fixing [43]. The defect prediction
uality decreased as the software evolved. The authors found that
his worsening can be accredited to a semantic drift of the classes
hich need to be taken into account when predicting defects.
herefore, the evolution of the repository showed an impact on
he prediction. Our work answers similar questions in a different
ontext and focuses on the structural changes.
Different studies focus on the impact of ontology evolution.

hen et al. [44] discuss how learned models become less accurate
s a stream evolves semantically. Their work is directly related to
ur approach: they study machine learning as their task, where
e focus on materialisation. They measure impact with accuracy

oss and use concept drift [45] as the underlying change which
auses the impact. Know-Evolve [46] is a model that enables deep
emporal reasoning over dynamic knowledge bases. The authors
pply machine learning over the graph and predict re-occurrence
f events. The time component directly affects the results of the
easoning from which an impact could be derived. Gonçalves
t al. [47] define a categorisation of changes based on a logical
mpact. They investigate if changes affect the set of entailed
xioms in the next version and distinguish between effectual
nd ineffectual changes. Using this categorisation, they analyse
CIT. Gross et al. [4] examine how the changes in an ontology
mpact previously conducted functional analysis. They propose
he stability of individual concepts as their impact measure. Got-
ron and Gottron [48] also investigate the impact of knowledge
ase evolution using Linked Open Data. They implement twelve
ifferent indexing methods and evaluate how the index is af-
ected by the evolution of the data using three different measures.
os Reis et al. [49] look into the impact concerning mappings
etween two evolving ontologies. Cardoso et al. [50] identify
he impact on annotation creation using an evolving ontology.
sborne et al. [51] present the pragmatic ontology evolution, in
4

which they analyse the selection of concepts for a new version by
evaluating the performance of four different tasks. However, [4,
48–51] focus on one ontology and its specific tasks, where we
aim for a broader selection of ontologies and the materialisa-
tion — a task not only used by the bioinformatics community
but also by other research fields as well as the materialisation
is potentially used by further applications. We have previously
investigated the impact of changes over embeddings [17] and
reported changes in neighbourhoods as impact. Additionally, we
used the types of changes and additional ontology information to
learn a linear model to estimate the impact without calculating
the embeddings [17].

Summarising, ontology evolution and evolution impact has
been a topic of various research initiatives. To our knowledge,
this is the first study to define and investigate impact on the
materialisation and at the same time investigating the evolution
at this scale. We focus on OBO, but our approach can be applied
to any other ontology.

3. Approach

In this section, we define two different groups of measures:
supportive and impact measures. Following the definitions, we
explain our computation strategy.

3.1. Supportive measures

This section introduces the supportive measures (popularity,
ontology, and edit) we use to investigate our research questions.
Popularity measures address some simple methods of assessing
the popularity of an ontology. The goal of the ontology measures is
to capture the information about every single ontology Oi which
is part of the evolving ontology O. The edit measures capture how
two consecutive ontologies Oi and Oi+1 differ.

Generally, we focus on measures with low computational
complexity. Measures with high computational complexity re-
quire a large amount of resources when the ontology size is
large. We target scenarios where measures should be computed
in an (interactive) online fashion, i.e. when the ontology en-
gineer modifies the ontology [16]. Our focus is, therefore, on
simple measures, which deliver information about the ontology
structure without requiring an excessive amount of resources for
calculation.

Popularity measures
We introduce three measures to determine if popularity influ-

ences the evolution of the ontologies. Possibly, if a larger number
of engineers are working on an ontology or if it is being used
more widely, it might influence the evolution of the ontology as
additional knowledge needs to be consolidated over time.

First, we consider the number of authors who contribute to the
ontology via GitHub, because OBO ontologies are often tracked
and shared via GitHub. Using the GitHub API, we can retrieve all
contributors and count them. Ekenayake et al. [43] have found
that more contributors to a software repository lead to less stable
bug prediction results. The authors used the number of contribu-
tors to decide when a new prediction model needed to be learned
due to the old one becoming inaccurate. The same might be
applicable in the domain of ontology engineering and therefore,
have an influence on the evolution of ontologies.

Second, we can count the number of months between the
start of the project and the latest version, by retrieving the first
and last commit to the repository, which also includes the date.
Also in this case, we utilise the GitHub API to retrieve such
dates. The number of months gives a comparable measure across
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ontologies, because ontologies are not being updated with the
same periodicity.

Third, we measure the usage of the ontology. Since there
s no reliable resource that tracks the ontology usage, we use
oogle Search to assess the number of mentions of the ontol-
gy’s permanent link. For this, we use the permanent links of
he ontology files, in both OWL and OBO formats, and report
he number of entries found by the Google Search Engine. We
onsider links to both formats because the usage of either OWL
r OBO heavily depends on the domain of the application. We
o not use both formats in the analysis of the ontology evolution
tself. We only consider both permanent links to determine their
opularity more accurately.

ntology measures
Through these measures and the edit measures which follow,

e aim at studying the evolution of the ontology, as described
ith RQ1.1. Table 2 shows the ontology measures, which were

nitially proposed in [31,52,54–60].
|OT

|EL++ and |OA
|EL++ count the number of EL++ axioms

n the ontologies. As explained in Section 2.1, the TBox includes
eneral concept inclusion, role inclusion, as well as domain and
ange axioms, while the ABox includes the concept and role
ssertions. To compute the number of axioms and assertions, we
efined the SPARQL queries reported in Table 2, which extract
he number of axioms for each type, and then we add them up.
and p count the atomic classes and properties defined in the
Box. The inheritance richness, calculated using c and the number
f explicit subclass relationships, tells us much about the class
ierarchy portion of the ontology.

dit measures
The edit measures capture differences between consecutive

ntology versions. We use these measures to investigate changes
between two snapshots of an ontology, because the changes
ive a different perspective on the evolution beyond simple
rowth investigation of classes, relations, or annotations. Changes
rovide a more thorough view and allows for more detail, where
he ontology measures are not sufficient.

We consider two different approaches for calculating edits
etween ontology: (i) a simple approach of counting additions,
eletions, and moves [47] as well as (ii) a more complex ap-
roach which includes the classification of changes into so-called
omplex change actions [14]. Edit measures presented in Table 3
re solely based on counts of logical axioms and the notion of
tructural equivalence as defined by Motik et al. [61]. Structural
dditions refer to the axioms that are in an ontology but not in
he previous version. Removals identify the axioms that were in
he previous version but are no longer present in the ontology.
hared axioms include the axioms that are in both versions of
he ontology. The definitions are shown in Table 3. We consider
he axioms which are either additions or removals as changes.
ust like for the calculation of ontology axioms (|O|EL++ ), where
axioms are counted according to EL++ logic as shown in Ta-
ble 2, |·| refers to the counting of axioms also using EL++ logic.
Therefore, we use the same queries for any |·| operation as we
do for |O|EL++ , except where specified otherwise (e.g., number
of subclasses h). This applies to the number of addition and
removals. The query for subclass additions and removal is also
already introduced in Table 2 (h in inheritance richness) and used
for hδ+

i
, δδ−

i
accordingly. The query is simply applied over the set

of changes δ+

i or δ−

i instead of the ontology O. All further usages
f |·| are also implemented in this fashion, where the queries
re applied over the appropriate set of changes δi, ontology Oi,
materialisation Mi, or materialisation changes ∆i.

5

Since we are dealing with EL++ OBO ontologies, we expect
that most changes affect hierarchies of concepts. Therefore, we
introduce an edit measure that relates the updates in the subclass
relations. Such a measure, called hierarchical moves, counts how
many removals have a corresponding addition, where the subject
or object of the triple remained the same.

Additionally to the measures described in Table 3, we use
COnto-Diff [14] for the classification of changes into complex
change actions. The classification is rule-based and has nine
atomic changes as basis: addition, deletion, and modification of
concepts, attributes, and predicates. These atomic change actions
are first identified and then condensed into complex change
actions, e.g., the addition of a leaf node consists of the addi-
tion of a concept, of its attributes, and of a link to an already
existing concept. The classification will enable a more thorough
analysis of types of changes and the impact the generate on the
materialisation.

3.2. Impact measures

The impact measures quantify how the ontology evolution
affects the materialisation. The state of the art does not include
ways of comparing materialisations between ontology versions.
Known measures are either meant for ontology matching or
for comparing two ontologies within the same domain but not
related to each other. At the same time, we are looking for mea-
sures that are simple to compute, meaning not computationally
intensive and computable in an online fashion. We propose the
measures presented below to close this research gap. We have
two groups of impact measures, the first focusing on impact
relative to the size of the materialisation, which we refer to
as size-based metrics further below (σ and σ⊑). The second set
focuses on the number of changes applied to the ontology and,
therefore, referred to as change-based metrics (γ , γ⊑, and γ̸⊑).

There are numerous ways to define impact, depending on the
ntology, the task, and the analysis to be performed. We designed
he measures to consider both the removed and added axioms
nd to make them symmetric (i.e. the impact between Oi and
i+1 is the same of the one between Oi+1 and Oi). Moreover, we

took into account that we are dealing with ontologies defining
subclass hierarchies (hence: σ⊑, γ⊑, and γ̸⊑), with large TBoxes
and small or absent ABoxes. Therefore, we do not pay spacial
attention to the ABox in our impact definitions, however, we also
do not exclude it.

Size-based metrics. In general, we have two families of impact
measures as we previously mentioned. The first includes mea-
sures defined as ratios between how much the materialisation
changes and how much has remained the same. Denominators
signal the amount of axioms that are shared between the two ma-
terialisations, and numerators count the differences. We defined
the values of impact measures ranging in [0, ∞), where 0 indi-
cates equality between two materialisations. When measures are
greater than 1, the materialisation changes substantially, i.e. more
than half of the axioms change. Since we are dealing with on-
tology that are evolving, we usually expect measures lower than
1.

The first impact measure is the percentage of the materialisa-
tion which changed due to ontology evolution. We define it as the
ratio between the number of inferred axioms that change and of
those that do not. To recap, axioms added to the materialisation
are denoted with ∆+

i = Mi\Mi+1 and those removed from the
materialisation are ∆−

i = Mi+1\Mi, where the Mx only contains
the inferred axioms (i.e., Mx ∩ Ox = {}). We refer to the changes

to the materialisation as ∆i, which accounts for both the added
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Table 2
Definition of the ontology measures and implementation (as SPARQL queries, command-line, or mathematical specification combining query results).
Name Formula Implementation Reference

TBox axioms |OT
|EL++ = GCI + DomA + RanA + RI [52]

ABox axioms |OA
|EL++ = CA + RA [52]

general concept inclusion GCI SELECT (COUNT(*) AS ?gci)
WHERE {{ ?s rdfs:subClassOf ?o }
UNION { ?s owl:disjointWith ?o }}

[52]

domain axioms DomA SELECT (COUNT(*) AS ?dom)
WHERE { ?s rdfs:domain ?o }

[52]

range axioms RanA SELECT (COUNT(*) AS ?ran)
WHERE { ?s rdfs:range ?o; a owl:ObjectProperty }

[52]

role inclusion RI SELECT (COUNT(*) AS ?ri)
WHERE { {?s rdfs:subPropertyOf ?o }
UNION ALL { ?s a owl:ReflexiveProperty }
UNION ALL { ?s a owl:TransitiveProperty }
UNION ALL { ?s owl:PropertyChainAxiom ?o }
UNION ALL { ?s a owl:FunctionalDataProperty }}

[52]

concept assertions CA SELECT (COUNT(*) AS ?ca)
WHERE { ?s a ?o. ?o a owl:Class }

[52]

role assertions RA SELECT (COUNT(*) AS ?ra)
WHERE { ?s ?p ?o. ?p a owl:ObjectProperty }

[52]

EL++ violations java -jar profilechecker.jar <file>
OWL2ELProfile

[53]

DL violations java -jar profilechecker.jar <file>
OWL2DLProfile

[53]

EL++ axioms |O|EL++ = |OT
|EL++ + |OA

|EL++ [52]

classes c = |CT
| SELECT (COUNT(DISTINCT ?s) AS ?c)

WHERE { ?s rdf:type owl:Class. FILTER isURI(?s) }
[54,55]

defined properties p = |PT
| SELECT (COUNT(?p) AS ?pt)

WHERE {{ ?p a owl:DatatypeProperty }
UNION ALL { ?p a owl:ObjectProperty }}

[54–57]

inheritance richness h/c h = SELECT (COUNT(*) AS ?h)
WHERE { ?s rdfs:subClassOf ?o }

[31,54,58–60]
Table 3
Definition of edit measures for two consecutive ontologies Oi and Oi+1 , as well as their materialisations Mi and Mi+1 .
Ontology (Oi and Oi+1) Materialisation (Mi and Mi+1) Name

|δ+

i | = |Oi+1\Oi| |∆+

i | = |Mi+1\Mi| Structural additions
|δ−

i | = |Oi\Oi+1| |∆−

i | = |Mi\Mi+1| Structural removals
|δi| = |δ+

i | + |δ−

i | |∆i| = |∆+

i | + |∆−

i | Structural changes
|δi |/|O|EL++

|∆i |/|M|EL++ Relative changes
hδ+

i
= |Hδ+

i
| h∆

+

i
= |H∆

+

i
| Subclass additions

with Hδ+

i
= {c|(c, subclassOf , o) ∈ δ+

i } with H∆
+

i
= {c|(c, subclassOf , o) ∈ ∆+

i }

hδ−

i
= |Hδ−

i
| h∆

−

i
= |H∆

−

i
| Subclass removals

with Hδ−

i
= {c|(c, subclassOf , o) ∈ δ−

i } with H∆
−

i
= {c|(c, subclassOf , o) ∈ ∆−

i }

hδi = hδ+

i
+ hδ−

i
h∆i = h∆

+

i
+ h∆

−

i
Subclass changes

hδ+

i ∩δ−

i
= |Hδ+

i
∩ Hδ−

i
| h∆

+

i ∩∆
−

i
= |H∆

+

i
∩ H∆

−

i
| Subclass moves

h + −/2×|δ | h + −/2×|∆ | Share of subclass moves
δi ∩δi i ∆i ∩∆i i

i
C
t
t
t
m
e
d

C
n
c
t
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γ

and the removed axioms. The unchanged axioms of the material-
isation is captured by the intersection of the two materialisations
(Mi ∩ Mi+1). We can now define σ :

σ =
|∆i|

|Mi ∩ Mi+1|
(1)

as the number of changes divided by the number commonal-
ities between the materialisations. When ontologies are large,
we expect the change impact to be close to 0, as the effect of
the changes on the materialisation should be dominated by the
number of inferred axioms that are not affected.

We have a second impact measure in this group, which focuses
solely on the subclass hierarchy. The numerator and denominator
only consider the subclass axioms of ∆i and Mi ∩ Mi+1:

σ⊑ =
h∆i , (2)
hMi∩Mi+1

6

where similar to hδi , h∆i is the number of SubClassOf axioms
n ∆i. hMi∩Mi+1 can be understood accordingly, where the Sub-
lassOf axioms are counted for the shared axioms between
he two materialisations Mi ∩ Mi+1. Hence, σ⊑ corresponds to
he number of added and removed subclass axioms in the ma-
erialisation divided by the joint subclass axioms of the two
aterialisations. This impact focuses on the hierarchy, and we
xpect it to be effective with biomedical ontologies, which often
efine taxonomies.

hange-based metrics. The second family of impact measures do
ot consider the size of the ontology. Rather, they focus on the
hanges in the materialisation (∆i) compared to the changes in
he ontology (δi). Therefore, the general impact based on changes
s:

=
|∆i| (3)

|δi|
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In contrast to the previous impact measures, γ only considers
he amount of changes applied to the ontology and the following
hanges to the materialisation. This means that when there are
ore changes in the materialisation than in the underlying on-

ology, impact is high (above 1.0). Consequently, when impact is
elow 1.0 the ontology changes did not lead to as many changes
n the materialisation.

We also introduce a specific impact measure for taxonomies,
hich only regards the subclass changes to the materialisation
h∆i ) in the numerator and the subclass changes to the ontology
hδi ), as previously defined in Table 3. Instead of only counting
he subclass changes to the materialisation we also subtract the
ubclass moves (hδ+

i ∩δ−

i
). This allows us to divide the subclass

changes to the materialisation by the changes to the ontology,
which do not have matches between additions and deletions.

γ⊑ =
h∆i

hδi − 2 × hδ+

i ∩δ−

i

(4)

lso for this impact measure, we expect the impact value to be
round 1.
Lastly, since we anticipate most impact to come from the class

ierarchy, we are also curious about the remaining changes and
f they impact the materialisation as well. To get the number of
hanges without the subclass changes, we simply subtract the
ubclass changes (h∆i for the nominator and hδi for the denomi-
ator) from the changes overall (∆i for the nominator and δi for
he denominator).

̸⊑ =
|∆i| − h∆i

|δi| − hδi

(5)

With this last impact measure, we can investigate the impact on
the materialisation without the hierarchy.

We further analyse the usefulness of the impact measures in
Section 5. We use ontologies and the supportive measures for the
analysis. We then discuss and answer research RQ2 in more detail
with real world data.

3.3. Metrics computation

All the measures presented above are implemented in the
framework depicted in Fig. 2. The workflow is supplied with an
evolving ontology and produces sequences of ontology, evolution,
and edit measures.

The Materialiser takes an ontology Oi as input and computes
the materialised axioms Mi. We implemented this component
using the OWL2 API [62], which allows exploiting state of the
art reasoners, among which we chose HermiT [19]. Since some
ontologies are in OBO format, the component uses the Robot
module [63] to convert them in OWL before materialisation.

The Diff-calculator processes pairs of consecutive materiali-
sations Mi and Mi+1 to generate the sets of added axioms ∆+

i ,
eleted axioms ∆−

i , and shared axioms Mi ∩Mi+1. In parallel, the
Diff-calculator also processes pairs of consecutive ontologies Oi
and Oi+1 to generate the sets of added axioms δ+

i , deleted axioms
δ−

i , and shared axioms Oi ∩Oi+1. We use the Ecco framework [64]
as implementation of this component.

COnto-Diff 1 is the module which also calculates a difference
between ontology [14]. However, unlike Ecco, this tool cate-
gorises the diff into multiple complex changes. Simple changes
(additions, deletions of concepts, relations, or attributes) are
grouped together to form more complex changes. We expanded
the implementation to return the number of the different com-
plex change actions instead of the entire list.

1 https://github.com/dbs-leipzig/conto_diff.
7

The measures are calculated using three separate python mod-
ules. The edit measures module computes the edit measures by
processing the added/deleted/shared axiom sets ⟨δ+

i , δ−

i , Oi ∩

Oi+1⟩. The impact measures module takes as input the data about
the materialisations, i.e. Mi and Mi+1, as well as their differences
and intersection ⟨∆+

i , ∆−

i , Mt ∩ Mi+1⟩, to compute the impact
measures. The ontology measures module takes an ontology Oi as
input and calculates the ontology measures. The three compo-
nents were developed in Python 3.6, using the rdflib’s SPARQL
interface.

Finally, the calculated measures are analysed by the Measure
Analyser — an R script that computes the monthly growth, aver-
ages, and standard deviations. We also use it to test hypotheses,
where applicable, and to generate tables and plots displayed
in the next sections. Based on the results from the Measure
Analyser, we assess and answer our research questions.

The code of the overall running script as well as the R code
used in the analysis are open source and available on our project
repository2 and published under the GNU GPLv3 License. It also
includes the modified version of Ecco and COnto-Diff as well as
the Materialiser. For all three components code is available, as
well as a build jar-file which was used during our calculations.

4. Datasets: Analysed ontologies

Even though there are many ontologies freely available, only
a few record the edit history and make it available in a reusable
format. GO and NCIT are two well known ontologies, which
publish not only the most current version, but also the previ-
ous ones.3 Additionally, we consider seven ontologies from the
OBOFoundry [65]: DOID, FYPO, UBER, PWO, RSO, ASV, PTO.4 In
this section, we describe our strategy for choosing the ontologies.
Next, we introduce each of them ordered by their size.

To select the OBO Foundry ontologies, we analysed its 260
ontologies. 49 of them are marked as obsolete, ten as inactive,
and six as orphaned. Out of the 179 remaining ontologies, 16
have either no available files or broken links to their repositories.
We found that 37 repositories include two files, one marked as
releases (called simply <ontology>.owl/.obo) and the other
as edit file (<ontology>-edit.owl/.obo). The edit file is used
for changing the ontology until it is deemed good enough for re-
lease. The commit messages of the release files follow the format
‘‘Release ⟨date⟩’’ and signal official releases with no intermediate
commits to these files. We consider the release files, as the edit
ones lead to extremely small changes that are not relevant for the
reasoning task [66]. Moreover, the released ontologies are ready
to be used, and should not contain errors due to the ongoing
editing. Finally, we selected the ontologies with more than 100
releases, to have a sufficient amount of versions to observe their
evolution and run statistical testing. Some remaining ontologies
fit these criteria but were not selected because of parsing or mate-
rialisation issues with many of their available versions, resulting
in seven ontologies selected from OBO Foundry.

Table 4 shows the ontology measures and the profile viola-
tions for the considered ontologies. We report and discuss the
ontologies starting with the largest ontology and ending with the
smallest one. The first row reports the number of versions for
each ontology, followed by the number of months they cover. The
second block of rows reports the compliance of the ontologies to
the OWL2 EL profile, as well as OWL2 DL by listing the number
of violations. We expect the ontologies to be in the EL++ profile.

2 gitlab.ifi.uzh.ch/ddis-public/chimp-mat.
3 Raw data can be downloaded from http://www.geneontology.org and https:

/evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive/.
4 http://www.obofoundry.org/.

https://github.com/dbs-leipzig/conto_diff
http://www.gitlab.ifi.uzh.ch/ddis-public/chimp-mat
http://www.geneontology.org
https://evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive/
https://evs.nci.nih.gov/ftp1/NCI_Thesaurus/archive/
http://www.obofoundry.org/
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Fig. 2. Calculation Pipeline.
able 4
he number of versions and months, which are being considered, and violations for OWL2 profiles as well as min, max and monthly change (mc) of the number
f EL++ axioms (|O|EL++ ) and classes (c), properties (p), and inheritance richness (h/c). Reported are also the number of versions and months which are being
onsidered and violations for OWL2 profiles.
Ontology NCIT GO DOID FYPO UBER PWO RSO ASV PTO

Versions 185 122 107 356 254 104 140 211 144
Months 108 195 51 56 116 98 101 58 108

viol. EL 232 2 30 3 22 OK OK 269 1
DL 97 1 17 3 OK OK OK 44 OK

|O|EL++

min 50’937 52’522 31’892 19’011 8’014 3’262 1’515 1’065 925
max 322’434 120’259 48’930 22’270 19’295 6’532 1’722 3’258 1’783
mc 2’281.487 340.820 261.036 57.175 116.300 65.400 3.569 21.930 7.461
mean 190787 83995 12178 40208 20841 2157 5639 1255 1606
sd 75643.8 20444.9 4067.3 4282.2 1098.0 731.1 747.5 255.6 95.8

c

min 28’757 31’989 8’446 8’495 9’192 2’544 1’347 857 642
max 124’025 50’119 13’984 9’396 12’451 4’728 1’549 2’642 1’412
mc 800.571 93.454 65.764 15.807 33.598 43.680 3.483 17.850 6.696
mean 87338 43209 10683 10597 9004 1733 4048 965 1438
sd 27278.8 5618.8 1136.6 1255.1 299.6 597.7 535.1 254.9 92.7

p

min 66 4 44 64 12 1 2 1 68
max 203 9 55 69 20 1 16 1 89
mc 0.908 0.021 0.109 −0.035 −0.010 0.000 0.241 0.000 0.148
mean 169.82 5.52 14.88 46.63 66.18 1.00 1.00 78.67 7.60
sd 32.82 1.90 2.26 1.45 1.62 0.00 0.00 7.14 7.04

h/c

min 1.247 1.641 2.567 1.749 0.871 1.273 1.103 1.220 1.006
max 2.313 1.958 2.896 1.870 1.440 1.418 1.117 1.270 1.037
mc −0.004 0.001 0.001 0.002 0.006 0.002 −0.0002 −0.0001 −0.0003
mean 1.37 1.83 1.05 2.78 1.82 1.24 1.39 1.02 1.11

sd 0.246 0.096 0.209 0.053 0.039 0.017 0.024 0.012 0.004

h
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However, if not, we also check for the DL profile, to ensure that
HermiT can be used as reasoner for all ontologies. The remain-
ing part of the table contains the ontology measures. For each
measure, the table provides the minimum, maximum, monthly
change, mean, and standard deviation. The minimum and maxi-
mum do not have to be from the first and last versions of each
ontology, they are to signal the range of the ontology measure.
The monthly change for the number of classes c is cn−c1/months−1,
where c1 and cn are the numbers of classes in the first and last
version, respectively. The raw data we collected and calculated
(without aggregations) is available for further analyses.5

NCIT is a widely recognised standard for biomedical coding
and Refs. [67]. It provides a vocabulary for diverse medical fields:
clinical care, transitional and basic research, public information,
and administrative activities. We use 190 versions of NCIT from
October 2003 to December 2019. NCIT shows the largest num-
ber of violations: 232 axioms violate OWL2 EL and 97 axioms
violate OWL2 DL. However, those numbers are negligible when
considering the total number of axioms. Among the ontologies we
consider, NCIT is the biggest and the one with the largest growth.

5 https://gitlab.ifi.uzh.ch/ddis-public/chimp-mat.
8

GO is a well-known ontology in the biomedical domain and
as been maintained by the Gene Ontology Consortium since
000. GO provides a precise and common vocabulary to describe
he role of genes and gene products in any organism [2]. We use
23 versions from January 2010 to December 2019. The older
ersions of GO that we are using are not directly available in OWL.
herefore, we decided to use all the versions in the OBO format,
nd convert them with Robot [63]. GO shows two violations of
he OWL2 EL profile, related to the metadata of the ontology:
ne is an axiom declaring an inverse property in the context of
he versionIRI and OntologyID, and the other is an unde-
lared annotation (license). Since both violations do not pose
problem, GO can be considered compliant to EL++. GO grows

faster than the ontologies presented below when considering the
number of classes. But the number of defined properties increases
by five throughout the evolution, which is small compared to the
growth of number of classes.

DOID is the human disease ontology [9]. The ontology has un-
dergone significant expansions in the past three years. Though an
expansion from single asserted classification to multiple-inferred
mechanistic classification, it provides a new perspective on re-
lated diseases. DOID had 107 commits on its GitHub reposi-
tory, which cover 51 months starting from November 2015. The

https://gitlab.ifi.uzh.ch/ddis-public/chimp-mat
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profile-checker reports that there are 30 violations for OWL2 EL
and 17 for OWL2 DL. This ontology grows significantly in the
considered time period. The slope for the number of properties
is negative, indicating that the last version of DOID has fewer
defined properties than the first one.

FYPO is an ontology of phenotype observed in fission yeast [7].
FYPO versions range from July 2015 to February 2020, and it is
the ontology with the highest number of versions (355) among
the ones we consider. FYPO shows three violations to the OWL2
EL Profile, all of which are the use of undeclared annotation
properties (title, description, and license). Therefore, it is
afe to assume that FYPO is an EL++ ontology. Both the number
f axioms and classes increase over time, while the number of
roperties does not grow significantly.
UBER is an integrative cross-species anatomy ontology [8]. It

is organised according to traditional anatomical classification cri-
teria, and models concepts in a species-neutral way. UBER reuses
several concepts and properties of other anatomical ontologies.
UBER has 305 versions, but we consider 254 because the 46
versions cannot be parsed. The versions we use cover 116 months
starting in September 2010. This ontology does not show any
OWL2 DL violations, while it has 22 OWL2 EL violations. UBER
is the third largest ontologies among the ones we consider. It is
also the third fastest growing ontology, with a growth rate slope
values slightly higher than DOID. The number of properties has
the highest growth among the ontologies we consider, but it is
small compared to classes and axioms.

PWO is the Pathway Ontology and it contains all known types
f biological pathways, including disease paths [10]. It also incor-
orates relations among pathways, creating an acyclic directed
raph structure. PWO has 104 versions, which cover 98 months
tarting from March 2011. PWO passes the profile-checker with-
ut violations for OWL2 EL, and consequently OWL2 DL. The
umber of properties does not change over time, and we observe
hat the number of axioms grows faster than classes.

RSO is another ontology developed by the maintainers of PWO.
It is a structured vocabulary for facilitating access to rat strain
data [11]. It models the breeding history, parental background,
and genetic manipulations. RSO cover 101 months starting from
February 2011, and it has 146 versions, but we considered 140
of them (6 raised parsing errors). Just like PWO, RSO passes the
profile-checker without violations for OWL2 EL and DL. The size
of RSO is also comparable to PWO. The number of properties is
constant, and the growth of axioms is larger than the growth of
the classes.

ASV provides definitions that are necessary for inter-operation
between epidemic simulators and public health application soft-
ware [12]. Versions of ASV range from May 2015 to February
2020, with 216 commits on the owl file. Despite its small size, this
is the ontology with the highest number of violations of the OWL2
EL profile. The smallest version has fewer than 1’000 axioms, and
grows to a maximum of 1’781 axioms. However, as the slope
shows, the first and last version have the same size. Therefore,
ASV grew during the covered time, but also shrank to its original
size with the last version. This is visible for classes and properties.
It is also interesting to note that this ontology has a large number
of defined properties, considering its size.

PTO is the Plant Trait Ontology; it is part of the Plant Ontology,
maintained by the Plant Ontology Consortium [13]. As the name
suggests, PTO encodes traits of plants. It is used in many other
ontologies focusing on specific trait of plants and on genetics of
plants. PTO has 144 versions, and it covers 59 months beginning
in July 2015. We were unable to run the profile-checker on most
versions of this ontology. This ontology is a OWL2 DL ontology.
The one violation for OWL2 EL is an inverse object property

definition. This profile was derived from version 24. All later

9

versions either gave a FileNotFoundException for importing
ontologies or a NullPointerException after the loading of
the ontology with the profile-checker. The growth rate between
axioms and classes is close to each other for PTO.

In conclusion, our analysis of the selected datasets confirms
our expectations: the ontologies have small or empty ABoxes
and most comply to the OWL2 EL profile. At the same time, the
ontologies show to have different sizes, growth rates, and number
of versions.

As previously stated in this section, we analysed ontologies
in OBO Foundry, which are about 30% of those referenced by
BioPortal (877)6 [68], and selected the ones fit for our analysis.
herefore, of the 30% analysed ontologies, we are confident that
e nonetheless selected a fairly representative sample of ontolo-
ies which fit our selection criteria and therefore, are appropriate
o study the research questions we introduced in Section 1.

. Changes and their impact

First, we analyse the evolution of the chosen nine ontologies.
e take a closer look at the changes and some trends within

hem. We will then address the different impact measures and
hat aspects they capture together with an analysis of the effect
f evolution on the materialisation.

.1. Ontology evolution

In Fig. 3, we report different distributions of the relative
hanges. The substantial ontology size difference also leads to
large difference in the number of changes, therefore, we vi-

ualise relative numbers rather than absolute ones. Additionally,
isualising ratios allows us to see outliers more clearly. Firstly,
ig. 3(a) shows the distributions of structural changes relative
o the respective ontology’s size (|δi|/|O|EL++ ). Secondly, Fig. 3(b)
reports the distribution of the share of hierarchical moves relative
to the number of structural changes (hδ

+

i ∩δ
−

i
/|δi|). In Table 5, we

lso report the means of the relative and structural changes.
dditionally, this table shows the number of contributors on
itHub and the number of Google search results of the ontologies
fficial file link for both the OWL and OBO file, as explained in
ection 3.1, Popularity Measures.
The number of absolute structural changes is directly related

o the size of the ontology. This can be read in Table 5. However,
his relation does not apply to relative changes. We confirmed
oth of these observations using a pairwise t-test to evaluate if
amples are taken from the same distribution. A significant result
eports that the means of the two samples are indeed different
rom each other and, therefore, from different distributions. We
annot report only significant results, neither for relative nor for
bsolute changes, which means that not all ontology comparisons
ields a significant difference between means. So, even though we
bserve a relation between the size of the ontology and number
f changes, we do not confirm it statistically.
Since size does not explain the differences, we investigate

he number of contributors and the popularity (mentions) of the
ntology reported in Table 5. By observation, we cannot see a
onnection between size of ontology and these two other aspects.
e did not test this statistically because the correlation result
ith only eight points is unreliable. However, there seems to
e a connection between the popularity of an ontology and the
umber of contributors, with two exceptions: PWO and RSO.
hese two ontologies are developed by the same team and are
ot properly tracked using GitHub. Therefore the number of con-
ributors is not reliable for these ontologies. Additionally, we do

6 https://bioportal.bioontology.org, last access: 29/05/2021.

https://bioportal.bioontology.org
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Fig. 3. Distributions of shares of different type of changes within the structural changes.
Fig. 4. Distribution of total number of complex changes computed with COnto-
Diff [14] (with 0s). Two outliers were omitted from the graph and are indicated
by including there actual number at the top of the plot.

Table 5
Mean of relative (|δi |/|O|EL++ ) and structural (|δi|) changes, ontologies ordered
y absolute number of changes (same as size). Number of Google search results
n 15.01.2021.

Contributors Mean changes Mentions

relative structural obo owl

NCIT – 0.205 11’774.125 – 16’900
GO 26 0.018 1’429.635 25’700 10’300
DOID 9 0.049 540.210 238 263
FYPO 4 0.006 261.195 88 83
UBER 12 0.009 185.667 5’630 4’090
PWO (3) 0.007 14.660 1’120 949
RSO (3) 0.003 14.729 81’200 31’300
ASV 5 0.014 22.207 – 8
PTO 8 0.003 4.333 419 285

not have a number of contributors for NCIT, because this ontology
is not updated or shared via GitHub. We also note that for GO and
RSO we see a large difference in mentions for OBO versus OWL
files. We believe that these two ontologies are much more used
within the biomedical domain compared to elsewhere, which
explains the higher number of mentions of the OBO file format.

We can now answer the research RQ1.1: What is the relation
etween the number of changes applied to the ontology and its size
or open biomedical ontologies, the evolution of which is available
nline? We observe the intuition within the presented data that

larger ontologies experience more changes. However, we are
unable to confirm this statistically at this point.

At the same time, the number of contributors does not explain
he absolute or relative number of changes. We observe a relation
etween the number of contributors and the popularity of an
ntology. Even though we notice growth tendencies and how
ntologies evolve based on size, there is still some uniqueness
o each of the ontologies that should not be left unnoticed, be-
ause size does not totally explain all differences between the
ntologies.
Further, Fig. 3(b) shows the distribution of hierarchical moves

h + −
n relation to structural changes ( δi ∩δi
/2×|δt |). A move consists

10
of one addition and one deletion of subclass axioms, hence, we
calculate the ratio using the number of changes divided by 2.
In 34 versions (removed from the visualisation), certain moves
were counted multiple times because there was more than one
addition or deletion identified as part of the move. Hence, in
these cases the ratio is larger than 1.0 and they are omitted from
Fig. 3(b). In most cases, the main part of the distribution (the
box) is under 0.5 (ASV, DOID, FYPO, NCIT, PWO, RSO). This signals
that for most versions the moves only make up about 25% of the
changes. This is different for PTO and UBER. The means are around
0.3, which is higher than for the other seven ontologies, and there
are almost no outliers. Therefore, these two ontologies experience
this type of change more often. For DOID, FYPO, PWO, RSO, and
ASV, the subclass moves do not occur as often, as for GO and
NCIT. GO and NCIT’s distributions of the share of subclass moves
is around 0.125, with theirs whiskers touching 0. Whereas for the
remaining five ontologies, the boxes end at 0 and no whiskers are
visible.

Fig. 4 shows the distribution of all complex changes detected
with COnto-Diff [14]. Two outliers have been cut off and are
labelled at the top of the graph. Fig. 5 shows the distributions of
the relative number of the specific complex change action types
in comparison to the total number of change actions. For com-
pleteness, we report the min, max, mean, median, and standard
deviation values in the appendix (Table A.8). We can see that the
addition of leaves (AddLeaf ), moves (Move), and the changes of
attribute values (ChgAttValue) build the most common complex
change actions as categorised by Hartung et al. [14]. Changes to
attribute values are present often, but do not necessarily make up
the largest part of the changes except for ASV and PTO or NCIT,
where there are none. In contrast, NCIT experiences the highest
number of additions of leaves and a smaller number of moves
when compared with GO, DOID, FYPO, UBER, PWO, and RSO. ASV
and PTO show a slightly different pattern with a lot of changes
to attribute values but a small amount of leaf additions and
even fewer moves. The remaining complex changes are visibly
less present. Therefore, we observe different types of behaviours
which we categorise into three groups:

(1) Ontologies in the first group experience many additions
(leaves), small amount of moves and close to no change
to attributes, visible in the evolution of NCIT. We see the
goal of the evolution to be the addition of new information
but only small amount of modifications to already present
information with moves. Ontologies in this group show a very
large monthly growth.

(2) The second group shows changes mostly in the form of leaf
additions, but these make up less than 50% of the changes on
average. Moves and changes to attributes together make up
the rest of the changes. This group includes six ontologies:
GO, DOID, FYPO, UBER, PWO, and RSO. These ontologies still
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grow substantially, but far less than those in the first group
(NCIT).

(3) Lastly, the third group experiences mainly maintenance in the
form of changes in attribute values and also moves. These
ontologies (ASV and PTO) do not experience that many ad-
ditions, and therefore, also show the lowest growth rate
compared to the first two groups.

We could also see this as a spectrum, where on the one end
we find NCIT with the highest growth (group 1) and on the
other and we have ASV and PTO that are mostly maintained and
do not grow much over time (group 3). The second or middle
group experiences both, addition of new information (growth)
and maintenance at the same time.

At this point we can also answer the research RQ1.2: What
re the most common complex changes which are applied to open
iomedical ontologies, the evolution of which is available online?
he most common changes are additions of leaves, moves, and
hanges to attribute values. Based on these three types of changes,
e also observe three slightly different change behaviours among
he ontologies. In short, they can be classified as either grow-
ng (1), being mostly maintained (3), or something in between,
rowing and also experiencing maintenance (2).

.2. Influence on materialisation

To further discuss the second research question and to answer
he last one, we investigate the evolution’s impact on the mate-
ialisation. Fig. 6 shows the impact measures based on size, in
omparison to the number of structural changes. Figs. 6(a) and
(b) show the individual points in the evolution of ontologies for
and σ⊑, and Figs. 6(c) and 6(d) show the linear regressions

or each ontology for σ . Fig. 6(c) relates the impact to struc-
ural changes, whereas Fig. 6(d) relates it to relative changes. In
igs. 6(a)–6(c) we observe two clusters of points or lines. The
ntologies use different shapes or line types based on size to
mprove readability. In the scatter plots, triangles are associated
ith small ontologies, which have fewer than 6’587 classes; the
11
remaining ontologies are large and are illustrated with circles. In
the line plots, full lines denote the small ontologies and dashed
lines denote the large ontologies. When the same amount of
change is involved, the large ontologies have a lower impact
on the materialisation compared to the small ontologies. This
behaviour confirms our initial idea: the smaller the ontology, the
higher impact of one single change.

σ and σ⊑ penalises large ontologies because of their size. We
ee that the absolute number of changes for large ontologies is
arger than in small ones (Table 5). As the figures indicate that the
ize of the ontology provides a classification into the two visible
lusters. Labelling each point according to the cluster visible in
ig. 6(a), we trained a decision tree model to identify the size of
he ontology which explains this classification visualised with the
wo shapes of points (circles and triangles). The classification into
ircles and triangles is used as the independent variable for the
ecision tree model. Using relative changes, as visible in Fig. 6(d),
e do not observe these two clusters of impact based on the size
f the ontology. Therefore, we infer that ontologies experience the
ame amount of relative changes, which coincides with the same
mount of impact. This observation is supported by the parallel
inear regression lines in Fig. 6(c) as well as in Fig. 6(d). The
lope and intercept numbers for both figures are also reported
n Table 6 on the left side. The right side of Table 6 lists the
pearman correlations between impact values and number of
hanges (either structural or relative) and their p-values. We can
ee that the correlation is almost one for all ontologies and all are
ighly significant.
Fig. 7 shows the set of impact measures related to the number

f changes. The three scatter plots relate the number of structural
hanges with γ , γ⊑, and γ̸⊑, respectively. Assuming that every
hange would effect at least one materialised axiom, we expect
he plots to hover near or above 1.0. Numbers far above 1.0 would
ndicate structural changes with a large impact, numbers below
.0 would indicate the presence of changes without any impact
n the materialisation.
We see differences when comparing Figs. 7(a) and 7(b). Though

verall the cluster prevails, γ is situated slightly higher than
⊑
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h

Fig. 6. Scatter plots showing the size-based impact (y-axis), where the nominator denotes change to the materialisation (∆i) and the denominator is the size of the

unchanged part of the materialisation (Mi ∩Mi+1). The x-axis shows structural (|δi|) or relative changes. Both axes are in logarithmic scale. Legend applies to all plots.
Table 6
Intercept and Slope of LM displayed in Figs. 6(c) and 6(d) and the correlation between σ and number of structural as well as relative changes.

Linear regression Spearman correlation

Structural changes Relative changes Structural changes Relative changes

Ontology Intercept Slope Intercept Slope σ ∼ |δi| σ ∼ |δi |/|O|

0.0069 (0.002)* 0.00001 (0.000)* −0.0006 (0.690) 0.95437 (0.000)* 0.39683 (0.000)* 0.80844 (0.000)*

NCIT −0.0071 (0.060) 0.00001 (0.000)* 0.0024 (0.460) 0.62029 (0.000)* 0.86687 (0.000)* 0.91932 (0.000)*
GO 0.0103 (0.000)* 0.00000 (0.002)* 0.0107 (0.000)* 0.08543 (0.006)* 0.85432 (0.000)* 0.87819 (0.000)*
DOID −0.0122 (0.044)* 0.00007 (0.000)* −0.0072 (0.041)* 0.67460 (0.000)* 0.98059 (0.000)* 0.98629 (0.000)*
FYPO −0.0003 (0.690) 0.00004 (0.000)* −0.0009 (0.130) 1.71652 (0.000)* 0.95404 (0.000)* 0.95739 (0.000)*
UBER 0.0019 (0.063) 0.00003 (0.000)* 0.0015 (0.120) 0.70530 (0.000)* 0.83493 (0.000)* 0.83864 (0.000)*
PWO 0.0053 (0.002)* 0.00032 (0.000)* 0.0037 (0.004)* 0.69446 (0.000)* 0.93294 (0.000)* 0.98742 (0.000)*
RSO −0.0038 (0.000)* 0.00032 (0.000)* −0.0010 (0.018)* 1.16621 (0.000)* 0.98873 (0.000)* 0.99293 (0.000)*
ASV −0.0021 (0.620) 0.00125 (0.000)* −0.0074 (0.110) 2.20945 (0.000)* 0.92498 (0.000)* 0.89882 (0.000)*
PTO −0.0015 (0.029)* 0.00095 (0.000)* −0.0014 (0.075) 1.50841 (0.000)* 0.91468 (0.000)* 0.95744 (0.000)*
Table 7
Regression and Correlation between γ , γ⊑ and γ̸⊑ as indicated in the header of the table. There are not enough points for PTO to calculate and PWO and RSO only
ave 0 for γ̸⊑ .

Regression Correlation

Ontology Intercept γ⊑ γ̸⊑ γ ∼ γ⊑ γ ∼ γ̸⊑

0.718956 (0.000)* −0.000036 (0.283) 1.099227 (0.000)* 0.460669 (0.000)* −0.103911 (0.008)*

NCIT 0.494509 (0.009)* 0.000008 (0.631) −0.470080 (0.367) 0.761905 (0.037)* 0.240981 (0.565)
GO 0.829993 (0.000)* 0.000053 (0.379) −0.685616 (0.001)* 0.603774 (0.000)* −0.304631 (0.028)*
DOID 0.754517 (0.000)* −0.000364 (0.080) 0.080905 (0.403) 0.183767 (0.101) −0.096839 (0.390)
FYPO 0.533731 (0.000)* −0.000011 (0.614) −0.022965 (0.564) 0.896273 (0.000)* −0.052464 (0.438)
UBER 0.515435 (0.000)* −0.000373 (0.384) −0.090611 (0.327) 0.076109 (0.594) −0.088682 (0.536)
PWO 0.857426 (0.000)* 0.117145 (0.023)* NA 0.471399 (0.001)* NA
RSO 0.998021 (0.000)* 0.000077 (0.873) NA 0.177227 (0.142) NA
ASV 0.663118 (0.000)* 0.212025 (0.000)* 0.959593 (0.000)* 0.016188 (0.866) 0.107977 (0.259)
PTO 1.000000 (0.000)* NA NA NA NA
12



R. Pernisch, D. Dell’Aglio and A. Bernstein Web Semantics: Science, Services and Agents on the World Wide Web 70 (2021) 100658

o

t
h
γ
p
T
c

b

c

a
s

g

Fig. 7. Scatter plots showing the change-based impact (y-axis) where the nominator denotes changes to the materialisation (∆i) and the denominator are changes

n the ontology (δi). The number of structural changes (|δi|) are on the x-axis. Both axes are shown in logarithmic scale. Legend applies to all plots.

o
s
o
t
t
i

d
c

f
i
t
w
i
b
p

a
p
o
i

γ , but still around 1.0, and it also displays more outliers above
1.0. Therefore, the changes on the class hierarchy have a high
contribution to the overall impact. We can confirm this with the
scatter plot in Fig. 7(c), which plots γ̸⊑ and shows impact without
he class hierarchy. All points situated at the bottom of this plot
ave no impact besides that of the class hierarchy, because their
̸⊑ is equal to 0.0. The remaining points show ontology version
airs which experience impact not connected to the hierarchy.
his impact is mostly below 1.0 as well, showing that other
hanges have less influence on the materialisation.
Further investigation into the characterisation of the points

etween 10e−2 and 10e2 in Fig. 7(c) was not fruitful. No feature
emerged that would identify such ontology version pairs, which
experience high impact outside of the hierarchy. We investigated
other common ontology measures known from works like [55,
56,58], such as property richness, annotation richness, or class-
property ratio. We also analysed the axioms in δi, ignoring general
oncept inclusion axioms with type and SubClassOf relations,
but we found no common changes among these points. There are
only 58 ontology pairs in this range (out of 1’090), and most of
such points relate to ASV and UBER. This behaviour is therefore
seldom, and in the cases of PWO, RSO, and PTO it never happens.
We also observe that in all the ontologies, the most common
changes are related to general concept inclusions, mostly type
triples, followed by subClassOf ones. Finally, the ontologies we
consider are biomedical EL++ ontologies, which typically have
strong focus on the class hierarchy relations and have no or a
mall ABox.
Further, We calculated regressions and correlation to investi-

ate the observation of most impact being related to the subclass
13
hierarchy. Results are shown in Table 7 with the regression on
the left side and correlation on the right side. The first line shows
the results over all ontologies combined. The regression target is
γ with γ⊑ and γ̸⊑ as input. Unfortunately, the regressions are
not significant in most cases. This looks different when looking at
the correlation, where some ontologies show a significant result
between γ and γ⊑. Even though the results are slightly ambigu-
us for individual ontologies, the results over all ontologies still
uggests that class hierarchy is the deciding factor for impact
n the materialisation. Hence, we conclude that the changes
o the hierarchy are the ones that most prevailingly influence
he materialisation. This confirms our initial intuition of creating
mpact measures tailored to class inheritance.

Additionally, in Fig. 7(a), and therefore for γ , there is no clear
istinction between the different sizes of ontologies. This is in
ontrast to the split we observe for σ in Fig. 6(a).
We also use the change classification from COnto-Diff [14]

or a further analysis. We calculate a linear model to learn the
nfluence of the different types of changes on the impact. Unfor-
unately, no change type emerged across ontologies, for which
e can say it has a significant influence on the materialisation

mpact. For some ontologies one or two types were significant,
ut most of the time they differed from each other. Results are
resented in the Appendix in Tables A.9–A.12.
Through the analyses we presented in this section, we can

nswer research RQ2: What are measures that are simple to com-
ute and allow to assess the impact of the ontology change on the
ntology’s materialisation? Our analyses support the fact that the
mpact measures capture different aspects of the consequences of
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changes: where one set focuses on the size of the ontology (σ and
σ⊑) and the other on the number of edits (γ , γ⊑, and γ̸⊑). σ and
σ⊑ show similar behaviour and no influence when only regarding
the hierarchy of the ontology. On the contrary, γ and γ⊑ display
differences in the scatter plots. σ and σ⊑ are heavily influenced
by the size, penalising the impact for large ontologies when small
part of axioms changes. Due to their design, γ and γ⊑ do not have
this problem. The measures are also simple to compute. We used
Ecco to calculate the difference between two materialisations. We
have also looked into the implementation within Protégé [15] and
will include the impact measures in the ChImp plugin [16].

To conclude, we analyse research RQ3: What aspects of changes
and which complex change types have the largest share in the
impact on the materialisation? This question concerns the ontology
evolution’s real consequences on the nine chosen OBO ontologies.
Once an ontology exceeds roughly 6’500 classes, we consider it
to be a large ontology. This clear distinction is visible in Figs. 6(a)
and 6(b). When using σ and σ⊑ as impact measures, large on-
tologies require more impactful changes to reach comparable
impact. However, relating the changes to the size, we found a
high correlation between the relative changes in the impact for
all ontologies. At the same time, the relationship reported is
similar for all ontologies, which allows us to generalise to other
ontologies with a similar profile. When considering γ and γ⊑, we
observe that most impact comes from hierarchy changes and also
consequences mostly on the hierarchy within the materialisation.
When hierarchy is not taken into consideration, we observed
that less than 2% of the ontology versions experience impact.
Therefore, we identify the evolution of the subclass hierarchy as
having the largest share in the impact on the materialisation.
This finding is in line with related work, where the features
capturing hierarchy relations were performing the best in the
change prediction task [37,50]. Surprisingly, no specific change
actions emerged to have a significant influence on the materiali-
sation impact. However, these change actions do not distinguish
between changes on the subclass hierarchy and other changes.
The type of change, where the addition or deletion occurs does
not reliably signal impact on the materialisation. The changes on
the subclass hierarchy are much more dominant in this regard.

6. Limitations and future work

The largest threat to validity is the analysis of only nine on-
tologies, when there are roughly 877 ontologies7 available in
BioPortal [68]. However, because of the selection criteria and
computational intensity of this research, we could not select
an excessive amount of ontologies. Many ontologies available
online do not openly share their evolution, but rather just the
recent release. Additionally, a more specific investigation has to
be conducted on the ABox, its changes and their impact on the
materialisation. Our chosen ontologies did not include ABoxes
and they are also rare in the biomedical domain. Hence, we
cannot draw any conclusions about ontologies which make use of
ABoxes. In our future work, we will extend the analysis towards
other types of ontologies, investigating both other description
logics and domains outside of biomedicine, but our constraint on
the availability of the evolution of an ontology remains.

Our analyses show that every ontology has its unique charac-
teristics, even though they are from the same domain and mostly
the same description logic. This supports recent claims that ontol-
ogy engineering and ontology evolution is still an open research
area that requires novel and more supporting instruments [69].

In this study, we do not focus on the analysis of the outliers,
as we are interested in the overall picture, as in previous studies

7 https://bioportal.bioontology.org/ — Accessed on 29/05/2021.
14
such as Gonçalves et al. [70] in the case of NCIT in 2011, and Gross
et al. on GO [4] in 2012. Such detailed analyses are still important
and necessary, as they may let properties and findings emerge
that are complementary to the ones we found in our study.

Lastly, even if the impact measures we introduced are effective
to carry out our analyses, they need to be validated and evaluated
by the ontology engineering community. As we have added the
measures in our ChImp Protégé plugin [16] our next step includes
a detailed user-study on the usefulness and informativeness of
the introduced measures. Additionally, this will give us the oppor-
tunity to study the awareness of change consequences in general.
We are interested in studying if such measures are useful to help
users to better understand the impact of their changes, and in
changing their behaviour.

7. Conclusions

It is a known fact that knowledge evolves constantly. As we
capture knowledge in ontologies, we inherently have to deal
with its evolution. As ontologies are often built to power subse-
quent applications, and the ontology evolution also impacts the
applications built on top of such ontologies. In this work, we
studied how ontology evolution affects their materialisation. Our
goal was two-fold: we defined materialisation impact measures
and analysed the relationship between ontology evolution and
the impact using the proposed measures. We carried out this
analysis for nine OBO ontologies, two of which are very large
and well established. At this point, we want to advocate for more
transparency in the editing process and ask ontology maintainers
and engineers to share the editing history of their ontologies.

Our primary contribution and the answer to our research
RQ2 is the definition of five impact measures, divided into two
sets. The first set concerns the consequences of changes on the
materialisation concerning the materialisation’s size. The second
set focuses on both the number of changes to the materialisation
and to the ontology.

To start the analysis, we took a closer look at the evolution
of ontologies themselves, which acted as a stepping stone to
understand the impact on the materialisation. We found that
even though we observed more changes being applied to already
large ontologies, we could not confirm this statistically (RQ1.1).
Additionally, using the relative number of changes to the size of
the ontology, no such distinction could be observed at all. We
investigated the types of changes in detail as well and found that
the most common complex change actions are addition of leaves,
moves, and changes of attributes (RQ1.2) classified using the rules
efined by Hartung et al. [14].
We then continued to use the proposed materialisation impact

easures RQ2 to investigate the influence of the evolution on
he materialisation. The first set of impact measures displays a
lear division based on the size of the ontologies, which allows
s to conclude that smaller ontologies experience a more con-
iderable impact on their materialisation regarding their size.
nce we correct for the size of the ontology and use relative
nstead of absolute changes, no distinction between ontologies is
isible. However, there is a very strong correlation between the
umber of changes and the impact, meaning that more changes
lso mean more impact on the ontology. With the help of the
econd set of impact measures, we found that most impact on
he materialisation is related to the hierarchy of the ontology,
xcept for some noise. This is also supported by the first set of
mpact measures, as no difference could be found between the
eneral impact and the impact on the class hierarchy, showing
he same distributions. Also taking into account the complex
hanges calculated using COnto-Diff [14], we were unable to
dentify commonalities among the ontologies, meaning that no

https://bioportal.bioontology.org/
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single or multiple change types have a significant share in the
impact on the materialisation. Therefore, we conclude that OBO
ontologies experience changes and their impact mostly on the
class hierarchy within the ontology or materialisation but not
specific to complex change actions. These findings answer RQ3.

Knowing that some changes or the accumulation thereof are
ausing a tremendous impact, could signal the ontology user that
hey need to update their version and recalculate tasks based
n the new version of the ontology. There is significant poten-
ial in future work following this research for investigating the
wareness of change effect with ontology engineers. Additionally,
ecause of the simplicity of the measures, they can easily be
ncorporated into ontology editors as well as release notes. It is
pen to see if knowledge about impact can improve processes
nd communication of ontology evolution between engineers and
sers. Hopefully, with time, we will be able to observe such
mprovements, which could result not only in better ontologies
ut also in a better usage of ontologies in other applications.
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Appendix A. COnto-Diff tables

The following tables are addressed in Section 5 but not dis-

cussed in detail.
able A.8
Onto-Diff complex changes relative to the total amount of complex changes in median, mean, and standard deviation for each change type and ontology with 0s,
hen a change action was not present in compared versions (instead of NA).

Total ChgAttvalue AddLeaf Move AddInner AddSubGraph Split DelInner DelLeaf

NCIT

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 604.000 0.000 0.718 0.133 0.058 0.026 0.006 0.000 0.000
max 41’531.000 0.000 0.966 0.878 0.292 0.165 0.073 0.363 0.637
mean 1’039.556 0.000 0.694 0.190 0.072 0.037 0.008 0.002 0.005
sd 3’136.318 0.000 0.167 0.159 0.049 0.036 0.008 0.027 0.049

GO

min 12.000 0.000 0.006 0.016 0.000 0.000 0.000 0.000 0.000
median 279.000 0.000 0.357 0.348 0.157 0.077 0.007 0.000 0.000
max 2’004.000 0.971 0.712 0.899 0.289 0.191 0.074 0.000 0.000
mean 321.345 0.048 0.342 0.385 0.148 0.076 0.009 0.000 0.000
sd 264.110 0.153 0.149 0.214 0.069 0.044 0.011 0.000 0.000

DOID

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 31.000 0.121 0.298 0.083 0.001 0.000 0.000 0.000 0.000
max 5’322.000 1.000 1.000 1.000 0.437 0.167 0.167 0.500 0.833
mean 172.606 0.304 0.381 0.207 0.031 0.019 0.014 0.019 0.039
sd 718.885 0.352 0.325 0.274 0.061 0.036 0.031 0.076 0.134

FYPO

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 17.000 0.063 0.373 0.121 0.102 0.026 0.000 0.000 0.000
max 5’499.000 1.000 1.000 1.000 1.000 0.250 0.200 1.000 0.623
mean 70.952 0.185 0.391 0.195 0.127 0.048 0.004 0.050 0.004
sd 367.108 0.244 0.285 0.228 0.135 0.059 0.019 0.140 0.041

UBER

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 16.000 0.000 0.356 0.404 0.067 0.018 0.000 0.000 0.000
max 8’975.000 1.000 1.000 1.000 0.500 0.167 1.000 0.490 1.000
mean 89.816 0.123 0.344 0.408 0.070 0.029 0.019 0.003 0.024
sd 591.625 0.276 0.242 0.282 0.070 0.035 0.081 0.036 0.119

PWO

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 16.500 0.007 0.427 0.020 0.211 0.143 0.000 0.000 0.000
max 95.000 1.000 1.000 0.514 0.533 0.286 1.000 0.000 0.222
mean 25.676 0.173 0.401 0.084 0.208 0.131 0.023 0.000 0.002
sd 23.210 0.266 0.217 0.122 0.121 0.075 0.110 0.000 0.022

RSO

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 9.500 0.143 0.400 0.000 0.023 0.000 0.000 0.000 0.000
max 4’644.000 1.000 1.000 0.845 1.000 0.400 Inf 0.079 0.333
mean 64.580 0.266 0.446 0.113 0.110 0.058 Inf 0.001 0.007
sd 399.612 0.324 0.334 0.185 0.152 0.087 0.007 0.043

ASV

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 17.000 0.906 0.036 0.000 0.000 0.000 0.000 0.000 0.000
max 933.000 1.000 1.000 0.692 0.686 0.200 0.067 0.478 0.653
mean 31.884 0.754 0.135 0.024 0.048 0.017 0.001 0.008 0.014
sd 99.167 0.323 0.241 0.089 0.111 0.034 0.008 0.054 0.072

PTO

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
median 4.000 0.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 344.000 1.000 1.000 1.000 0.333 0.303 0.101 0.250 1.000
mean 15.624 0.613 0.127 0.213 0.016 0.007 0.001 0.002 0.024
sd 45.706 0.393 0.277 0.312 0.051 0.036 0.010 0.024 0.137
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Table A.9
Results of the linear model to estimate the size impact σ using the complex actions classified by COnto-Diff.

(Intercept) Total ChgAttvalue AddLeaf Move AddInner AddSubGraph Split DelInner DelLeaf

NCIT estimate −0.052 0.000 0.052 0.079 0.129 −0.072 0.432 9.472
p.value 0.671 0.038 0.667 0.519 0.316 0.569 0.016 0.681

GO estimate −0.002 0.000 −0.026 −0.003 0.014 0.021 −0.051
p.value 0.914 0.000 0.125 0.855 0.418 0.622 0.403

DOID estimate 0.342 0.000 −0.330 −0.327 −0.337 1.241 −1.690 −0.032 −0.328 −0.334
p.value 0.000 0.008 0.000 0.000 0.000 0.015 0.008 0.929 0.091 0.002

FYPO estimate 0.003 0.000 0.017 −0.001 0.009 0.014 −0.014 −0.058 −0.003 0.016
p.value 0.812 0.826 0.276 0.941 0.565 0.614 0.808 0.689 0.907 0.870

UBER estimate 0.002 0.000 −0.003 −0.005 0.001 −0.004 −0.003 0.000
p.value 0.525 0.000 0.407 0.236 0.862 0.562 0.814 0.979

PWO estimate −0.024 0.001 0.011 0.031 0.058 0.039 −0.025 0.017
p.value 0.585 0.000 0.811 0.486 0.218 0.370 0.621 0.083

RSO estimate 0.000 0.001 −0.015 −0.004 −0.028 0.076 −0.145 −0.031 0.458 −0.079
p.value 0.996 0.000 0.639 0.891 0.407 0.058 0.005 0.205 0.310 0.367

ASV estimate 0.046 0.000 −0.018 −0.047 −0.080 −0.051 −0.054 −0.110 0.041 −0.006
p.value 0.246 0.878 0.683 0.560 0.743 0.781 0.917 0.947 0.924 0.984

PTO estimate −0.110 −0.010 0.324 0.154 0.098 −0.057 0.667
p.value 0.908 0.046 0.735 0.873 0.918 0.957 0.657
Table A.10
Results of the linear model to estimate the subclass size impact σ⊑ using the complex actions classified by COnto-Diff.

(Intercept) Total ChgAttvalue AddLeaf Move AddInner AddSubGraph Split DelInner DelLeaf

NCIT estimate −0.052 0.000 0.053 0.079 0.129 −0.071 0.431 9.466
p.value 0.668 0.038 0.664 0.517 0.314 0.573 0.016 0.681

GO estimate −0.002 0.000 −0.026 −0.003 0.014 0.021 −0.051
p.value 0.911 0.000 0.126 0.858 0.415 0.620 0.404

DOID estimate 0.341 0.000 −0.328 −0.326 −0.336 1.235 −1.683 −0.032 −0.327 −0.333
p.value 0.000 0.008 0.000 0.000 0.000 0.015 0.008 0.930 0.091 0.002

FYPO estimate 0.003 0.000 0.017 −0.001 0.009 0.013 −0.014 −0.058 −0.003 0.016
p.value 0.812 0.827 0.276 0.941 0.564 0.615 0.810 0.688 0.905 0.870

UBER estimate 0.000 0.000 −0.002 −0.003 0.002 −0.002 −0.002 0.000
p.value 0.895 0.000 0.599 0.467 0.535 0.808 0.846 0.994

PWO estimate −0.024 0.001 0.011 0.031 0.059 0.039 −0.025 0.017
p.value 0.585 0.000 0.810 0.486 0.217 0.371 0.622 0.084

RSO estimate 0.000 0.001 −0.015 −0.004 −0.028 0.076 −0.145 −0.031 0.458 −0.079
p.value 0.996 0.000 0.639 0.891 0.407 0.058 0.005 0.206 0.310 0.367

ASV estimate 0.007 0.000 0.010 −0.004 −0.024 −0.007 −0.030 0.042 0.079 0.044
p.value 0.734 0.719 0.677 0.928 0.855 0.943 0.915 0.962 0.734 0.801

PTO estimate −0.101 −0.010 0.309 0.144 0.089 −0.053 0.652
p.value 0.914 0.046 0.741 0.878 0.924 0.959 0.657
Table A.11
Results of the linear model to estimate the change impact γ using the complex actions classified by COnto-Diff.

(Intercept) Total ChgAttvalue AddLeaf Move AddInner AddSubGraph Split DelInner DelLeaf

NCIT estimate 0.075 0.000 0.616 0.569 0.182 0.881 3.208 −217.487
p.value 0.963 0.273 0.706 0.729 0.916 0.605 0.181 0.483

GO estimate 0.060 0.000 0.586 0.827 0.894 1.230 −0.749
p.value 0.895 0.381 0.213 0.101 0.067 0.312 0.665

DOID estimate 0.914 0.000 0.019 −0.155 −0.374 0.975 −0.606 0.097 0.025 −0.450
p.value 0.000 0.042 0.913 0.383 0.041 0.429 0.693 0.913 0.957 0.079

FYPO estimate 0.582 0.000 −0.049 −0.094 −0.048 −0.027 0.006 −0.884 −0.127 −0.299
p.value 0.000 0.228 0.445 0.110 0.465 0.799 0.978 0.130 0.185 0.440

UBER estimate −0.259 0.001 0.419 0.658 0.846 1.031 0.681 −1.388
p.value 0.384 0.110 0.188 0.064 0.009 0.059 0.468 0.095

PWO estimate 0.583 0.000 0.175 0.448 0.412 0.125 0.670 0.127
p.value 0.330 0.567 0.769 0.456 0.519 0.834 0.330 0.342

RSO estimate 1.000 0.000 −0.039 0.010 0.023 −0.031 0.007 0.036 −0.278 0.065
p.value 0.000 0.860 0.721 0.924 0.837 0.816 0.967 0.669 0.855 0.826

ASV estimate 13.149 −0.011 −11.695 −10.569 −13.058 −10.942 −10.335 −14.045 −7.723 −14.004
p.value 0.000 0.892 0.005 0.112 0.641 0.499 0.805 0.965 0.848 0.597

PTO estimate −5.229 0.027 7.542 5.674 6.695 −3.077 0.249
p.value 0.807 0.831 0.727 0.794 0.754 0.897 0.994
16
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Table A.12
Results of the linear model to estimate the subclass change impact γ⊑ using the complex actions classified by COnto-Diff.

(Intercept) Total ChgAttvalue AddLeaf Move AddInner AddSubGraph Split DelInner DelLeaf

NCIT estimate −3926.145 0.200 4007.178 4012.148 −1685.175
p.value

GO estimate −291.050 1.602 664.451 250.391 206.909 −2770.407 1411.984
p.value 0.852 0.000 0.708 0.884 0.900 0.482 0.785

DOID estimate 0.979 0.120 −29.701 −35.928 228.445 −1267.714 1271.949 229.436 −373.248 −6.294
p.value 0.991 0.040 0.748 0.705 0.020 0.057 0.123 0.629 0.144 0.963

FYPO estimate 23.697 0.035 290.789 −45.488 −56.870 −37.542 163.949 −978.889 −69.989 −346.372
p.value 0.904 0.878 0.238 0.839 0.824 0.931 0.851 0.728 0.862 0.938

UBER estimate −5.535 0.675 3.279 1.786 45.251 −95.799 −137.676 −106.980
p.value 0.961 0.011 0.978 0.989 0.706 0.641 0.702 0.734

PWO estimate 0.941 0.000 −0.114 0.060 2.227 0.174 0.120
p.value 0.000 0.845 0.543 0.743 0.000 0.704 0.261

RSO estimate 1.000 0.004 −0.613 −0.212 29.348 −5.373 2.086 3.042 0.870
p.value 0.723 0.852 0.847 0.941 0.000 0.181 0.698 0.232 0.918

ASV estimate 10.685 −0.005 −8.471 −9.248 −15.052 −9.253 −12.846 −16.511 −14.302 −1.422
p.value 0.000 0.939 0.008 0.067 0.490 0.449 0.691 0.946 0.662 0.961

PTO estimate 1.000 0.000 0.000
p.value
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