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ABSTRACT
Updates on ontologies affect the operations built on top of them.
But not all changes are equal: some updates drastically change the
result of operations; others lead to minor variations, if any. Hence,
estimating the impact of a change ex-ante is highly important, as it
might make ontology engineers aware of the consequences of their
action during editing. However, in order to estimate the impact of
changes, we need to understand how to measure them.

To address this gap for embeddings, we propose a new measure
called Embedding Resemblance Indicator (ERI), which takes into
account both the stochasticity of learning embeddings as well as
the shortcomings of established comparison methods. We base ERI
on (i) a similarity score, (ii) a robustness factor 𝜇 (based on the
embedding method, similarity measure, and dataset), and (iii) the
number of added or deleted entities to the embedding computed
with the Jaccard index.

To evaluate ERI, we investigate its usage in the context of two
biomedical ontologies and three embeddingmethods—GraRep, LINE,
and DeepWalk—as well as the two standard benchmark datasets—
FB15k-237 and Wordnet-18-RR—with TransE and RESCAL embed-
dings. To study different aspects of ERI, we introduce synthetic
changes in the knowledge graphs, generating two test-cases with
five versions each and compare their impact with the expected
behaviour. Our studies suggests that ERI behaves as expected and
captures the similarity of embeddings based on the severity of
changes. ERI is crucial for enabling further studies into impact of
changes on embeddings.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.
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1 INTRODUCTION
Ontologies like the Gene Ontology (GO) [25] change over time.
They are updated by inserting new knowledge, removing outdated
information, and updating wrong one. At the same time, the GO is
used in subsequent tasks such as functional enrichment analysis
[10]. Consequently, the result of the functional enrichment anal-
ysis over GO can yield a different result depending on the input
version [10].

In this work, we consider the computation of embeddings1 as
the subsequent task over an evolving ontology or knowledge graph.
Embeddings are rarely used alone, but rather power subsequent
applications such as link prediction or recommender systems. In
the biomedical domain, embeddings are used to discover new drug-
disease associations or protein-protein interactions, among others
[30]. A small change in the ontology, e.g., a new subclass link
between already existing classes, can have a big impact on the
inherent structure of the embedding. Whereas changes to, e.g. a
description of an entity, will not have any impact on the embedding.
With impact, we refer to the difference between the two embeddings
calculated on two different versions of the same ontology. However,
there is always a collection of changes between two versions of an
ontology and not every change in the ontology leads to significant
changes in its embedding model. Additionally, the learning of an
embedding model consumes considerable amounts of resources.
Consequentially, the indication of a big difference between the
old embedding and the new one would signal the necessity for
recomputation [18, 29]. The opposite would signal that little would
be gained from learning a new embedding and that meanwhile the
previously learned model can be used.

So far, the research on embeddings has focused on finding the
best embedding algorithm, where "best" is measured in terms of link
prediction or classification performance [30]. The comparison of the
1We will use the terms embedding and embedding model interchangeably throughout
the paper to refer to the result of the learning process.
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embedding model without a subsequent task is mainly known from
natural language processing, where word embeddings are compared
to determine drifts in languages using similarity measures [29].
Hence, little is known about how embeddings are influenced by
the evolution of knowledge captured in the ontologies, which are
used as input. A natural and useful step forward is the investigation
of impact measures able to warn ontology users of grave changes
[16, 29]. Thus, we first investigate the state of the art (SOA) on
embeddings similarity measures and their suitability for comparing
embeddings learned on different versions of the same ontology.

We identify their two shortcomings. First, they capture stochas-
ticity of the embedding algorithms, which can be seen by running
the same algorithm multiple times on the same data and observing
that the resulting embeddings can largely differ. This leads to our
main research question (RQ):
RQ: How can shortcomings of embedding similarity measures be

overcome?

We propose a new impact measure called Embedding Resemblance
Indicator (ERI), which is dependent on a similarity measure. ERI
accounts for the stochasticity of the embeddingmethod and corrects
for the unmatched entities between the two embeddings. It captures
the impact of changes, not the stability of embedding methods like
similarity measures do. Hence, ERI signals howmuch an embedding
changed because of the changes in the underlying KG used as input
for the calculation.

To show that ERI behaves as intended, we develop test cases for
which we generate synthetic knowledge graph versions. We apply
the test cases to two well-established biomedical networks—drug-
disease-associations (DDA) [21] and protein-protein-interactions
(PPI) [23]—as well as on the FB15k-237 (FB) benchmark dataset
[26] and Wordnet-18-RR (WN) [6, 13]. Additionally, we use five
different embedding methods for them, choosing among the best
and well known ones: GraRep [4], LINE [24], and DeepWalk [19]
from the BioNEV package [30] for DDA, and PPI, TransE [28] and
RESCAL [12] from the LibKGe Package [3] for FB and WN. All test
cases confirm the usability of ERI, for the comparison of embedding
models for an evolving input graph, ontology, or knowledge graph.

Therefore, our contributions are summarised as follows:
• The identification of shortcomings of embedding similarity
measures and

• The introduction of ERI, an impact measure based on similar-
ity measures, a robustness factor, and correction for applied
changes.

Having an impact measure like ERI, which captures the changes in
the embedding model without the stochasticity of the embedding
method, is highly relevant for future research [29]. In the future,
ERI could be learned, estimated, or approximated to inform on-
tology engineers and ontology users about potentially impactful
changes between ontology versions. It can also enable research
towards explainability of impact of changes on embedding calcula-
tions. Therefore, we present a very important step towards closing
the communication gap between ontology engineers and ontology
users by introducing an embedding impact measure.

Next, we introduce related work in different aspects of our re-
search. This is followed by a section which identifies the shortcom-
ing of SOA and defines ERI. We evaluate ERI in Section 4 in the

context of a case study. Limitations and future work are addressed
in Section 5 and Section 6 concludes our work.

2 RELATEDWORK
There are different aspects related to the presented research. Ontol-
ogy evolution is the stepping stone on which our research is based.
Ontology evolution is a well studied and understood topic. Among
others, Zablith et al. [31] survey various evolution processes and
Hartung et al. [11] show the different tools for managing, exploring,
and propagating changes on ontologies. Such studies focus on how
ontologies are maintained. However, they exclusively look at the
need for updates. Our interest lies in the consequences and effects
of ontology evolution on downstream tasks.

A well-known consequence of evolution is semantic drift or se-
mantic impact. SemaDrift [22] is a tool to calculate various semantic
drift measures between versions of ontologies. It applies different
methods of calculation and distinguishes between an exact, inex-
act, and hybrid ontology matching approach. In OntoDrift [5], the
authors introduce an update to semantic drift measures used in
SemaDrift for a better global comparison. In contrast to these tools,
we compare the impact of ontology change in the context of embed-
dings, which can then be used in multiple more specific tasks like
link prediction, classification, or recommender systems, instead of
the ontologies directly.

There are other studies that directly investigate the effect of
ontology evolution on a specific task. Gonçalves et al. [8] define
a categorisation of changes based on entailment impact. For the
classification of a change, they investigate if it influences the set
of entailed axioms in the next version. Gross et al. [10] examine
how the changes in an ontology impact previously conducted func-
tional analysis. They define an impact measure based on stability
of concepts over time and investigate the results of enrichment
analysis using real and synthetic data to prove the effectiveness of
the measure. Gottron and Gottron [9] also investigate the impact of
KG evolution using LOD. They implement twelve different indexing
methods and evaluate how the indices are affected by the evolution
of the data using three different measures. Osborne and Motta [14]
present the pragmatic ontology evolution, in which they analyze
the selection of concepts for a new version by evaluating the per-
formance of four different tasks. Our work, in contrast, focuses on
the direct comparison of embedding models.

In order to study the impact of ontology evolution on embed-
dings, we need to compare the learned models. Comparing graph
embeddings, the result of a stochastic calculation process, is a chal-
lenge. The most common way of evaluating an embedding model
is through the performance in link prediction, graph completion,
and entity classification tasks [30]. However, existing evaluations
through a task are heavily dependent on the task itself, they are bi-
ased as well as unforgiving to false positives, which are not included
in the test datasets [20, 30].

Comparing embeddings directly and absolutely is difficult: di-
mensions and distance between embedded entities have to be taken
into account, which are dependent on a random seed. Looking be-
yond graph embeddings, there exist approaches to compare word
embedding models in language processing [1, 27, 29]. Wang et al.
[27] focus on biomedical datasets, and compare word embeddings
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Figure 1: General model of the problem setting with ontol-
ogy at time 𝑖 (𝑂𝑖 ), the changes (𝛿𝑖, 𝑗 ) leading to𝑂 𝑗 , embedding
calculation (𝑒𝑚𝑏 (·)) result 𝐸𝑖 and 𝐸 𝑗 .

based on medical texts. Wegmann et al. [29] focus on language mod-
els and investigate different types of semantic shifts in a specific
language. They use local neighborhood (LN) similarity and global
sentiment displacement to show that these two measures capture
different types of semantic shift known in linguistics [29]. A visual
approach has emerged implementing comparison methods and pre-
senting neighbourhood distributions [2]. Since LN similarity is the
most common comparison method, we focus on this approach and
analyse its shortcomings.

Summarising, ontology/KG evolution and embedding compari-
son have been largely investigated. However, to our knowledge, this
is the first work introducing a measure for the purpose of studying
the impact of ontology evolution on embeddings.

3 THE EMBEDDING RESEMBLANCE
INDICATOR (ERI)

This section first introduces the setting of impact between embed-
dings based on ontology versions. It then discusses established
similarity measures and their shortcomings. Finally, it proposes
solutions to these shortcomings and, based on those, we define ERI.

3.1 Setting
An ontology 𝑂 is a set of triples (𝑠, 𝑝, 𝑜), where 𝑠 is the subject, 𝑝
the predicate, and 𝑜 the object. An entity has a uniform resource
identifier (URI) and in most ontologies and KGs also a reference
𝑟 for internal usage. Subjects are always entities and objects are
either entities or literals. For some embedding methods, also literals
receive a reference 𝑟 but they do not have an identifierwithin the KG.
However, most embedding methods take into account only entities2.

We follow the terminology introduced by Pernischová et al. [18].
Let 𝑂𝑖 and 𝑂 𝑗 be two different versions in O. The changes which
lead from 𝑂𝑖 to 𝑂 𝑗 are summarised with 𝛿+

𝑖, 𝑗
for additions and

𝛿−
𝑖, 𝑗

for deletions. We refer to set of additions and deletions with
𝛿𝑖, 𝑗 . Analyses on the evolution of the National Cancer Institute
Thesaurus and other biomedical ontologies, like those by Gonçalves
et al. [7] and Pernisch et al. [15], suggest that this sets of changes
can range from small (e.g. empty or one) to extremely large (e.g.
30’859 subclass axioms, 9’070 classes and 23 object properties as
reported by Gonçalves et al. [7] for one specific version). Therefore,
our definition does not restrict the number of changes 𝛿𝑖, 𝑗 .

2We ignore the embedding of properties in our definitions, as we do not require them
in further definitions and calculations.
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Figure 2: Distribution of intra-version similarity for PPI and
FB (10 runs on 𝑂𝑏𝑎𝑠𝑒 ).

We define 𝑒𝑚𝑏 (·) as a function which applies to an ontology and
produces the result 𝐸. In this framework, an embedding 𝐸 is a set
{𝑒1, . . . , 𝑒𝑛}, where 𝑒𝑖 denotes a pair (𝑟𝑖 , 𝑣𝑖 ), composed by the URI
𝑟𝑖 ∈ 𝑅 identifying the entity, and the embedding 𝑣𝑖 ∈ 𝑉 of 𝑟𝑖 . A
reference 𝑟 uniquely identifies an entity from the ontology 𝑂 .

The operation 𝑒𝑚𝑏 (·) takes as arguments an ontology and zero
or more additional parameters if necessary. When the operation
𝑒𝑚𝑏 (·) is applied to 𝑂𝑖 , it creates the result 𝐸𝑖 . Given 𝑂𝑖 and 𝑂 𝑗 ,
the respective results 𝐸𝑖 and 𝐸 𝑗 can be the same (if the changes do
not affect the result of 𝑒𝑚𝑏 (·)), or they can differ.

3.2 Shortcomings of LN Similarity
We investigate the local neighborhood (LN) similarity as it is a
widely accepted measure for comparing embedding models [18,
27, 29]. The LN similarity compares the neighbourhood of match-
ing entities in two embeddings to each other. This means that
only common entities between the embeddings (𝑅𝑖 ∩ 𝑅 𝑗 ) are com-
pared. First, LN calculates the distance of the entity to all other
entities in their embedding. Next, the Jaccard index is used to
compare the set of closest neighbours between the two embed-
dings subject of the comparison. Depending on the usage, a num-
ber of closest neighbours is chosen, for example 25 or 100. Given
these calculations the entities only present in 𝑂𝑖 or only in 𝑂 𝑗 (i.e.,
∀𝑟 : (𝑟 ∈ 𝑅𝑖 ∨ 𝑟 ∈ 𝑅 𝑗 ) ∧ 𝑟 ∉ 𝑅𝑖 ∩𝑅 𝑗 ) are not taken into account. The
comparison of embeddings only happens on common entities be-
tween the input ontologies, whose identifiers match (𝑅𝑖 ∩ 𝑅 𝑗 ). This
is the first shortcoming of SOA embedding similarity metrics, espe-
cially metrics which take an identity-based approach. Therefore,
we propose to add a set comparison of 𝑅𝑖 and 𝑅 𝑗 to the embedding
similarity. Capobianco et al. [5] take this approach to extend the
calculation of semantic drift for the entire ontology. They use the
Jaccard index to “correct” the calculated drift by the set comparison
of entities between the compared ontology versions.

The second shortcoming concerns the comparison of results of
a stochastic function. Two embeddings, calculated with different
seeds, do not give the exact same result. Therefore, the similarity
between models learned on the same version of the ontology (intra-
version) captures the robustness of the embedding method. High
similarity means that the algorithm delivers a reasonably similar
model when executed multiple times. Low similarity shows that it
is not providing stable models even when given the same input. A
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specific dataset and algorithm delivers a maximal similarity in an
intra-version comparison that is rarely 1.

In Figure 2, we see the intra-version comparison for the Protein-
Protein Interaction (PPI) network embeddings with DeepWalk,
GraRep, and LINE, as well as the FB15k-237 (FB) with RESCAL
and TransE. We can see that these values are distributed all around
and only a few values of PPI’s GraRep embeddings are 1. Especially
for the embeddings of PPI, the quality of the embeddings and hence
the results of the intra-version comparison differs greatly, as is
visible by the multiple peaks for each algorithm. We do not see this
for FB, however, those values are nonetheless far from 1. Given this
comparison, the SOA similarity measures capture the robustness
of an embedding method on a particular dataset, given the same
input multiple times. With multiple calculations on the same input,
we do not see a similarity close to 1. Therefore, similarity measures
of this kind are not sufficient to capture the difference between
embedding models, when the input graph changed (inter-version
comparison). Hence, there is a need for a measure that regards the
stochasticity of the embedding algorithm. We propose to use intra-
version similarity as an upper bound of the achievable similarity
given a dataset, embedding method and similarity measure.

3.3 Definition of ERI
As discussed above, similarity measures fail to consider two aspects:
unmatched entities between two models and the stochasticity of
the method. We propose to correct the similarity measure in two
different ways to counteract these shortcomings and to receive a
result that shows the difference of embedding models based on the
changes between two ontology versions.

The first shortcoming of standard similarity measures is that
they only compare entities which are present in both embeddings.
We propose to follow the idea of [5] and use the Jaccard index. The
Jaccard index is a set comparison measure, which we apply to the
sets of references of each embedding model (𝑅𝑖 and 𝑅 𝑗 ):

𝐽 (𝑅𝑖 , 𝑅 𝑗 ) =
|𝑅𝑖 ∩ 𝑅 𝑗 |
|𝑅𝑖 ∪ 𝑅 𝑗 |

(1)

When the Jaccard index is equal to 0, it indicates no overlap between
the two sets of references and 1 means that all entities are the same.
The comparison of embeddings needs to include the entire ontology,
not just the semantic shifts, which is what similarity measures can
capture according to Wegmann et al. [29].

We address the second shortcoming—the stochasticity—by propos-
ing a correction of the similarity based on the robustness of the
embedding method, an upper-bound given by the intra-version
similarity of embedding models. We define 𝜇 as the robustness of
an embedding method. 𝜇 is the mean of the similarity between
embeddings learned on the same input ontology. The mean seems
the best middle ground, according to the different distributions seen
in Figure 2. Therefore, our definition of ERI includes 𝜇, which char-
acterizes the robustness of the embedding method and is dependent
on the similarity measure, embedding algorithm, and the dataset
input version 𝑂𝑖 . With the addition of 𝜇, our impact measure does
not capture the stability of the embedding method but rather the
changes in the underlying structure, making it orthogonal to simi-
larity measures. For the calculation of 𝜇, 𝑒𝑚𝑏 (·) is run 𝑁 times on

𝑂 , generating 𝐸 (𝑘)
𝑖

, 𝑘 ∈ [1, 𝑁 ] on the base version 𝐸𝑖 :

𝜇 (𝑠𝑖𝑚(·), 𝐸𝑁𝑖 , 𝑁 ) = 1
𝑁 (𝑁 − 1)/2

∑
𝑛<𝑚:𝑛,𝑚∈𝑁

𝑠𝑖𝑚(𝐸 (𝑛)
𝑖

, 𝐸
(𝑚)
𝑖

) (2)

Putting these extensions together, we propose the following
impact measure called Embedding Resemblance Indicator, short ERI,
which overcomes the shortcomings of similarity measures:

𝐸𝑅𝐼 (𝐸𝑖 , 𝐸 𝑗 , 𝜇, 𝑠𝑖𝑚(·)) =𝑚𝑖𝑛(
𝑠𝑖𝑚(𝐸𝑖 , 𝐸 𝑗 )

𝜇
, 1) × 𝐽 (𝑅𝑖 , 𝑅 𝑗 ) (3)

where 𝐽 (𝑅𝑖 , 𝑅 𝑗 ) is the Jaccard index defined in Equation (1), which
accounts for the lack of comparison between new and removed
entities using their references (𝑟 ), 𝜇 is the robustness factor defined
in Equation (2). In this work, 𝑠𝑖𝑚(·) is LN similarity, however, ERI
could technically be used with any similarity measure.

The name for ERI refers to the capturing of how much two
embedding models calculated on two versions of the same ontol-
ogy resemble each other. The word resemblance suggests that ERI
matches entities that are in common between two embeddings, but
also accounts for the missing matches.

Discussion. Let us discuss the expected behaviour of ERI and
consider a simple case of a taxonomy and its three versions: 𝑂𝑏𝑎𝑠𝑒 ,
𝑂𝑎𝑑𝑑 ,𝑂𝑑𝑒𝑙 . The difference between𝑂𝑏𝑎𝑠𝑒 and𝑂𝑎𝑑𝑑 is the addition
of one leaf node and the difference between 𝑂𝑏𝑎𝑠𝑒 and 𝑂𝑑𝑒𝑙 is a
deletion of one leaf node. Given our impact definition, the similarity
between the embeddings learned on these three taxonomies is the
same, contingent on a certain allowance for stochasticity of the em-
bedding algorithm. The similarity between them will be 1, because
the single difference between them is not taken into account by
the similarity measure. We only compare the nodes that are com-
mon among 𝑂𝑏𝑎𝑠𝑒 , 𝑂𝑎𝑑𝑑 , and 𝑂𝑑𝑒𝑙 . Using ERI, the Jaccard index
(J) adjusts the similarity. Note that the adjustment would not be
the same when comparing𝑂𝑏𝑎𝑠𝑒 and𝑂𝑎𝑑𝑑 , or𝑂𝑏𝑎𝑠𝑒 and𝑂𝑑𝑒𝑙 . The
union of 𝑂𝑏𝑎𝑠𝑒 and 𝑂𝑎𝑑𝑑 has the newly added element, whereas
the union of 𝑂𝑏𝑎𝑠𝑒 and 𝑂𝑑𝑒𝑙 would be missing that particular ele-
ment, but would still contain all those from 𝑂𝑏𝑎𝑠𝑒 . Therefore, the
𝑖𝑚𝑝𝑎𝑐𝑡 (𝐸𝑏𝑎𝑠𝑒 , 𝐸𝑎𝑑𝑑 ) and 𝑖𝑚𝑝𝑎𝑐𝑡 (𝐸𝑏𝑎𝑠𝑒 , 𝐸𝑑𝑒𝑙 ) values would not be
equal because of J but close to each other, allowing for stochasticity
of the embedding method.

Taking another case, let us consider 𝑂𝑏𝑎𝑠𝑒 and 𝑂𝑚𝑜𝑣𝑒 , where
we move one node from a leaf to a node position. In this case, J
is equal to 1, because all entities remain the same among 𝑂𝑏𝑎𝑠𝑒

and 𝑂𝑚𝑜𝑣𝑒 . The change is solely captured by 𝑠𝑖𝑚(𝐸𝑏𝑎𝑠𝑒 , 𝐸𝑚𝑜𝑣𝑒 )
and should yield a bigger impact to the neighbourhood, because
the entity has changed place in the hierarchy than the previous
example.

Therefore, given a set of changes: a move of a node from leaf
to root and the removal of a leaf, the move should have a larger
influence on the impact measure than the removal of a leaf node.
The removal of a root node would be trickier as the neighbourhood
changes, but it is unclear how much from an intuitive point of view.

4 THE RESEMBLANCE CASE STUDY
In this section, we evaluate ERI based on a case study. We evaluate
ERI on four datasets: Drug-Disease-Associations (DDA), protein-
protein-interactions (PPI), Freebase FB15k-237 (FB), and WordNet-
18 RR (WN). We selected appropriate embedding methods for DDA
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Table 1: 𝜇 and its standard deviation (𝑆𝐷) calculated with LN
similarity, cosine distance, and 100 neighbours.

number of embeddings compared t-test 𝑝-value
Method 3 5 10 3vs5 5vs10

D
D
A DeepWalk 0.5540 (0.2189) 0.5533 (0.2194) 0.5532 (0.2189) 0.597 0.732

GraRep 0.4223 (0.2226) 0.4218 (0.2219) 0.4227 (0.2231) 0.779 0.417
LINE 0.4397 (0.2330) 0.4411 (0.2332) 0.4409 (0.2331) 0.306 0.799

PP
I DeepWalk 0.6424 (0.2449) 0.6163 (0.2530) 0.6088 (0.2567) 0.315 0.348

GraRep 1.0000 (0.0000) 0.8059 (0.0990) 0.6106 (0.1200) 0.002 0.003
LINE 0.4864 (0.2401) 0.4896 (0.2393) 0.4857 (0.2387) 0.833 0.630

FB

RESCAL 0.3645 (0.1630) 0.3636 (0.1642) 0.3625 (0.1610) 0.128 0.063
TransE 0.4806 (0.1923) 0.4811 (0.1924) 0.4810 (0.1916) 0.096 0.345

W
N RESCAL 0.1412 (0.1630) 0.1285 (0.1510) 0.1285 (0.1510) 0.001 0.732

TransE 0.8244 (0.1429) 0.8231 (0.1433) 0.8125 (0.1466) 0.712 0.000

and PPI: GraRep [4], LINE [24], and DeepWalk [19], which are all
part of BioNEV [30]. For FB and WN, we consider RESCAL [12]
and TransE [28]. We picked TransE as it is a de-facto standard for
embedding benchmarking, despite it is a translational method and
it is not well suited for neighborhood similarity comparisons. We
use the implementations of LibKGE [3].

4.1 Datasets and Tasks
For DDA, we extracted a drug-disease-association network from
NDF-RT [21] version 2018/01/02. We followed the same extraction
process as [30] using their code available online.3 We extended the
code with a parser from the RxNorm [32] format to OWL, which
we provide on our website.4 DDA is a bi-partite graph, where there
are only connections between drugs and diseases. For PPI, we used
STRING v11 [23] and their provided interaction for homo sapiens.
We created a network using interactions higher than 800. The code
is available as a Jupyter Notebook online (cf. Footnote 4). For the
FB and WN datasets, we used the versions provided by LibKGE [3].

Before running the analysis, we ensured the embedding quality
using a link prediction test, which is available in the framework
provided by Yue et al. [30] and also Broscheit et al. [3]. Link pre-
diction showed high performance of around 0.85 AUC, which we
do not discuss further, since it is not subject of our case study or
our research, but we provide the results in the project repository4.
Finally, to evaluate ERI, we generated two sets of synthetic test
cases (presented in in Section 4.3).

4.2 Estimation of 𝜇
We take a closer look at 𝜇 and the stability of the chosen embedding
algorithms. To investigate the number of intra-version similarity
comparisons necessary for 𝜇, we generated ten embeddings for all
datasets. In Table 1, we report 𝜇 calculated using Equation (2) and
the standard deviation for 𝑁 equals 3, 5, and 10. This corresponds
to 𝑁 (𝑁−1)

2 intra-version comparisons between the calculated em-
bedding models. We use cosine LN similarity with 100 neighbors.

The results show that formost embedding algorithms and datasets,
a small number of embedding calculations gives a reasonable es-
timation of 𝜇. This finding is incredibly insightful for embedding
methods, which require a long time for calculation as in the cases of
TransE or LINE. When an embedding algorithm is performing well
3https://github.com/xiangyue9607/BioNEV
4https://gitlab.ifi.uzh.ch/DDIS-Public/chimp-emb, which also includes all embeddings.

with link prediction, the variation in the intra-version comparison
is not considerable and one does not need more than ten embedding
calculations for a base estimation of 𝜇. Dealing with a 𝜇 as the one
for WN with RESCAL (0.1285), the small difference is important
because the comparison of inter-version embeddings is also below
this value and a small difference in 𝜇 matters for ERI. However, the
value does not change between the intra-version comparison of
five and ten embedding models.

We also see that especially WN shows smaller standard devi-
ations. Similarly, FB with RESCAL and PPI with GraRep have a
standard deviation below 0.2. All other embedding methods and
comparison show values between 0.2 and 0.26. Table 1 also reports
the 𝑝-value of a t-test to determine if the difference between the
comparisons is statistically significant or not. We see that ten em-
beddings are not enough to achieve a stable 𝜇 in the rare cases of
GraRep with PPI and TransE with WN . Therefore, we use 𝜇 calcu-
lated over ten embeddings in our evaluation of ERI. We calculated
ten additional embedding and compared in total 20 embeddings. We
found a 𝜇 = 0.504 (𝑠𝑑 = 0.230) for GraRep with PPI and 𝜇 = 0.810
(𝑠𝑑 = 0.147) for TransE with WN. The result with 3 embeddings for
GraRep and PPI shows a similarity of 1. This does not mean that
the embeddings are identical, since we are not comparing absolute
numbers of the vectors but rather that the neighbourhoods are
the same, when taking 100 neighbours into consideration. A t-test
10vs20 resulted in 𝑝-values of 0.000 and 0.099 respectively. For these
two cases, we use 𝜇 of 20 embeddings in subsequent calculations
and 10 embeddings for all other dataset and embedding method
combinations.

For all datasets, we used the base version for the calculations of 𝜇.
Since the estimation of the robustness factor already requires a con-
siderable amount of embedding calculations, it would be beneficial
if this estimation can be reused when the base version changes. We
investigate this by calculating 𝜇 for all test cases which we created
(and explained in detail below). Table 2. As we can see, the choice
of version the marginally influences the value of 𝜇; however, we
recommend to calculate 𝜇 on the base version, so the older version
of the two compared ontologies. We observe that the larger the
difference between the versions, the larger the difference between
the robustness factor 𝜇. This shows that the embedding calculation
and its stochasticity is not only dependent on the parameters of the
algorithm but also on the input dataset.

𝜇 and the standard deviation show us how stable the calculation
of an embedding given a particular method and dataset is. It is
interesting to see that the big datasets (FB andWN) are slightlymore
stable than PPI and DDA. Unlike RESCAL and TransE, the three
embedding methods executed on PPI and DDA do not calculate
embeddings for properties. RESCAL and TransE also deliver an
embedding of properties, which we do not regard in this evaluation
because the LN similarity does not consider them. However, it is
possible that they aid in providing a more stable embedding.

4.3 Test Cases
For our case study, we define two test cases based on the DDA
dataset, because we are dealing with a bi-partite graph as input to
the embedding method which is the most restricting of the four
graphs. Here, bi-partite means that all relations in the dataset are

https://github.com/xiangyue9607/BioNEV
https://gitlab.ifi.uzh.ch/DDIS-Public/chimp-emb


K-CAP ’21, December 2–3, 2021, Virtual Event, USA. Pernisch et al.

Table 2: 𝜇 calculated using different versions (10 embeddings
each). 𝜇 calculated with base below method.

v1 v2 v3 v4 v5

D
D
A

DeepWalk TC 1 0.4961 0.5729 0.5657 0.5597 0.5968
0.5532 TC 2 0.5845 0.5701 0.5585 0.5713 0.5613

GraRep TC 1 0.4306 0.4284 0.4289 0.4283 0.4429
0.4227 TC 2 0.4281 0.4280 0.4252 0.4253 0.4318

LINE TC 1 0.4467 0.4494 0.4477 0.3512 0.3888
0.4409 TC 2 0.4505 0.4507 0.4405 0.444 0.4482

PP
I

DeepWalk TC 1 0.6316 0.6740 0.6853 0.5125 0.4811
0.6088 TC 2 0.6146 0.6122 0.6066 0.6082 0.6094

GraRep TC 1 0.5213 0.5411 0.5726 0.4662 0.5727
0.6106 TC 2 0.5312 0.5286 0.5285 0.5232 0.5229

LINE TC 1 0.4593 0.4357 0.5416 0.4238 0.4451
0.4857 TC 2 0.4719 0.4644 0.4701 0.4721 0.4260

FB

RESCAL TC 1 0.3688 0.3771 0.3792 0.3818 0.3987
0.3625 TC 2 0.3550 0.3585 0.3529 0.3578 0.3508

TransE TC 1 0.4922 0.4926 0.4894 0.4907 0.4938
0.4810 TC 2 0.4890 0.4904 0.4902 0.4899 0.4810

W
N

RESCAL TC 1 0.1440 0.1507 0.1600 0.1711 0.1812
0.1285 TC 2 0.1365 0.1319 0.1255 0.1267 0.1075

TransE TC 1 0.8074 0.7818 0.7788 0.7491 0.7323
0.8125 TC 2 0.8214 0.8154 0.7954 0.7988 0.7904

between drugs and diseases. All additional information, such as
hierarchy between drugs or between diseases, is not part of the
graph and of the embedding. Even though this is not the case for PPI,
FB, and WN, we treat them the same as DDA and apply the same
generation procedure to create test cases for a better comparison.

To show that ERI captures changes according to their severity,
we generate two cases for testing. The first case (TC 1) is the deletion
of edges between low degree entities. The second case (TC 2) is
the deletion of edges between high degree entities. Edge deletions
are solely based on the degree of nodes, and we focus on deletions
because we do not want to inject non-existent and especially non-
sensical data into the graphs. For each test case, we prepare five edge
lists (v1 - v5), which differ in the number of to be deleted edges.
Table 3 shows the number of deletions for each test case. DDA
comes with 67’224 edges and PPI with 364’045 edges in their base
networks used in these test cases. FB has 246’236 triples andWN has
86’726. A removal of an edge does not imply the removal of nodes,
therefore, J = 1 when no nodes are removed in the edge deletion
process. The corresponding code can be found in our repository4.

For FB and WN, we ignore the types of properties and removed
“edges” based on the degree of the entities they connect. We remove
more edges for FB and WN than for DDA and PPI, because FB and
WN are less well connected, and deleting edges between nodes
with only one connection already lead to massive deletions, as it is
reported in Table 3. We do not remove the property information,
as it is required for the embedding methods, however we simply
ignore it when removing connections between entities.

We observe the importance of the inclusion of the Jaccard index
in the ERI. Given that TC 1 deletes edges between low-degree nodes,
it is more likely that these nodes will end up without any connec-
tions to the rest of the graphs and will, hence, not be embedded.
Therefore, we observe that the Jaccard index for TC 1 is lower than
for TC 2. Traditional measures only focus on joint entities and do
not measure the lack of overlap—a drawback ERI overcomes.

Table 3: Number of deleted edges and the Jaccard index for
the synthetic versions of the two test cases.

v1 v2 v3 v4 v5

D
D
A TC

1 deleted edges 1 17 177 441 3’167
𝐽 (𝑅𝑏𝑎𝑠𝑒 , 𝑅𝑣𝑖

) 0.96376 0.98757 0.93125 0.98030 0.93160

TC
2 deleted edges 1 23 183 507 3’093

𝐽 (𝑅𝑏𝑎𝑠𝑒 , 𝑅𝑣𝑖
) 1 0.99999 1 1 1

PP
I TC

1 deleted edges 127 1’111 15’415 29’667 74’292
𝐽 (𝑅𝑏𝑎𝑠𝑒 , 𝑅𝑣𝑖

) 0.96342 0.89998 0.85518 0.70888 0.71569

TC
2 deleted edges 106 1’148 15’846 30’542 74’294

𝐽 (𝑅𝑏𝑎𝑠𝑒 , 𝑅𝑣𝑖
) 0.98777 0.97081 0.98777 0.96045 0.98600

FB

TC
1 deleted edges 1’322 5’167 13’280 25’648 54’528

𝐽 (𝑅𝑏𝑎𝑠𝑒 , 𝑅𝑣𝑖
) 0.99601 0.99305 0.98879 0.98439 0.97930

TC
2 deleted edges 1’623 5’156 13’943 27’467 57’348

𝐽 (𝑅𝑏𝑎𝑠𝑒 , 𝑅𝑣𝑖
) 1 1 1 1 1

W
N TC

1 deleted edges 1’066 5’136 9’573 15’289 21’018
𝐽 (𝑅𝑏𝑎𝑠𝑒 , 𝑅𝑣𝑖

) 0.98942 0.98456 0.95889 0.94993 0.91686

TC
2 deleted edges 2’730 5’536 9’307 11’702 20’322

𝐽 (𝑅𝑏𝑎𝑠𝑒 , 𝑅𝑣𝑖
) 1 0.99988 0.99978 0.99929 0.99665

PPI DDA FB WN
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(b) Local neighbourhood similarity with cosine distance and 𝜇. The
legend from Figure 3a also applies here.

Figure 3: ERI and cosine similarity of case study. The
straight full lines indicate 𝜇 for each method and dataset.

As a consequence, we calculate ten embeddings for each gen-
erated edge list and dataset version. For the comparison between
base and test case versions, we always report mean ERI to account
for the stochasticity of the embedding process.

4.4 Results and Discussion
Figure 3 reports results of our case studies. In the figure, we can see
ERI and the LN similarity calculations underneath each other. We
report similarity and ERI with the cosine distance metric with 100
neighbours. We observe that as the version number progresses, the
resemblance measured as ERI of embeddings is generally getting
smaller. This behaviour is not as clearly visible with the similarity
metric only. We also calculated ERI with euclidean and city-block
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distances, and they do not add additional findings. Therefore, we
do not discuss them further for the sake of space and the calculated
values are available in our repository.4

Figure 3b shows the similarity and 𝜇 for the respective algorithms
and test cases. 𝜇 is the full line. As we can see, the similarity does
not always capture any difference between the base similarity (𝜇)
and testcases. This is especially true for WN with RESCAL, and
with the DDA dataset, where 𝑠𝑖𝑚(·) and 𝜇 are practically constant
across the versions. Also for FB, the similarity and the difference
between the synthetic versions is minimal. Here, we can clearly see
a benefit from ERI. Given that we have a difference in the number of
entities, ERI reflects this using the Jaccard index in the comparison.
However, that is not the only benefit. Using 𝜇, we defined an upper
bound for the similarity, and we can clearly see that this upper
bound is not exceeded when comparing different input versions.

Even though we clearly observe the benefit of 𝜇 and the Jaccard
index, not all used datasets profit equally from ERI. On the one
hand, WN with TransE already provided a promising comparison
with the test cases without ERI, but with RESCAL that is not the
case. On the other hand, DDA does not seem to benefit as much
from ERI as other datasets. The values are close to 1, suggesting that
the embedding is not experiencing much fluctuation even when
many edges are removed. FB and PPI are clearly benefiting also
between the two test cases, where TC 1 experiences more impact
on the embedding than TC 2. This difference is less visible with the
similarity metric and ERI makes it more apparent.

We believe that the answer of the height ERI for DDA lies in
the structure of the dataset: DDA is a bi-partite network and the
others are not. In DDA the “only” structural changes are edge
removals between the two sets of nodes in the bi-partite graph.
Hence, the bi-partite structure remains intact and learnable for the
embedding algorithm, producing high ERI. In contrast, for PPI, FB,
and WN, important structural elements might have been removed,
leading to a larger impact on the embedding, and, consequently,
experiencing lower ERI. It is also interesting to study the difference
between TransE and RESCAL with FB and WN. Models for WN
learned with RESCAL show less influence of the changes than
those learned with TransE. For FB, we see the opposite: TransE
is more robust against changes in input than RESCAL. We do not
find differences between methods for PPI and DDA, which are as
profound as with FB and WN. This shows that ERI reports on the
changes to the underlying ontology, and not on the instability of the
embeddings caused by the stochasticity of the embedding method.
In an uncertainty scenario like the calculation of embeddings, it
is unlikely to completely isolate such stochasticity. Therefore, we
will never be able to attribute the difference in embedding models
solely to the changes in the underlying ontology.

To summarise, the results show that our proposed impact mea-
sure overcomes the shortcomings of similarity measures. By taking
established datasets and several well known embedding methods,
we eliminate several uncertainties. Since we observe high perfor-
mance with the link prediction for all datasets and algorithms, we
are convinced that the learned embeddings in our evaluation are
of high quality and can further be evaluated using ERI with con-
fidence. Nonetheless, no matter how we choose to evaluate ERI,
the embedding method’s stochasticity can not be eliminated com-
pletely. Therefore, it is not possible to solely isolate the effect of

the changes and how the impact measure captures them. However,
we can approximate it with ERI. For ERI to be applied in a different
scenario, we urge researchers to not forget the uncertainty of em-
bedding calculations as such. ERI only considers the changes and
we assume that researchers using embeddings in their applications
are aware of the stochasticity of their method as such.

5 LIMITATIONS AND FUTUREWORK
Datasets andmethods. We chose four well known datasets, which

are often used for embedding evaluations. We also chose embedding
methods, which are well established and known in the respective
communities. The choice of methods was also based on the nature
of the embedding methods and we covered the different approaches
matrix factorisation, random walks, and neural networks. There-
fore, we are confident that our evaluation generalises also to other
datasets and embedding methods.

Similarity measures. The goal of this study is to define ERI, and
not to investigate the meaning of the SOA similarity measures. We
do not aim at categorizing these measures and advising on which
aspects the similarity measures capture. Besides, ERI is not limited
to the use of LN similarity measures: it provides the possibility to
use other similarity approaches within its definition.

Robustness factor 𝜇. Our robustness factor definition depends
on the similarity measure and ontology, and not only on the em-
bedding algorithm. We need further investigations on the stability
of embeddings to determine to which degree 𝜇 can be generalised
and approximated. Currently, one first needs to calculate multiple
embeddings to get an idea of the robustness factor, however that is
not the case for every update of the ontology, as we have seen.

Evaluation. We use test cases, synthetic ontology versions of
established datasets and embedding methods to assess whether ERI
behaves as intended. We considered two specific domains where
embeddings are used regularly. A measure like ERI is valuable and
enables resemblance estimation in the future. One still needs to
estimate the stochasticity of an algorithm over a specific dataset
and similarity measure. Additionally, we used multiple embedding
calculations to give a more rounded evaluation of ERI. However,
in the real world scenario, applications do not operate on multiple
embeddings, but on one. Hence, multiple calculations are warranted
in this scenario, but would not be relevant when applied elsewhere.

As future work, we plan to evaluate embedding calculations and
the impact of specific changes inmore detail, taking into account the
semantics of changes. ERI enables investigating different semantic
changes and how they influence the learned model, which has not
been possible so far due to the fact that SOA similarity measures
are heavily limited by the stochasticity of the embedding algorithm.
Our experiments suggest that even if the stochasticity can not be
factored out completely, ERI is effective in considering it. However,
stochasticity should not be dismissed and always be considered
when using ERI to assess the evolution impact on an embedding.

6 CONCLUSIONS
The impact of ontology evolution is getting more attention as more
ontologies are shared across the web and used in various applica-
tions. It is essential to consider the consequences of the growing and
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ever-changing knowledge that we, as researchers, capture in ontolo-
gies and use further [17, 29]. The consequences on the embedding
have not been addressed before.

We found two essential shortcomings of SOA embedding simi-
larity measures. We answer our research question by defining an
impact measure called Embedding Change Impact (ERI). ERI builds
on similarity measures and overcomes their shortcomings. ERI is
orthogonal to similarity measures. It captures impact of changes
but does not give indication on stability of embedding methods.

To evaluate ERI, we investigated its different aspects and show
how it overcomes the shortcoming of similarity measures. We es-
timated 𝜇, the robustness factor of the embedding method using
different number of embeddings learned on the same version of the
DDA network from NDF-RT [21] and PPI network from STRING
v11 [23]. We found that with high quality embeddings, 𝜇 can be
estimated with a small number (e.g. five) of embedding compar-
isons. Using test cases, we generate synthetic ontology versions and
calculate multiple embeddings. This process gives an estimation of
the real impact of the changes on the embedding. The computed
resemblance varies between the used datasets, but a comparison
between the different test cases yields expected results. Therefore,
we conclude that the proposed impact measure is valid for the
application of embedding model comparison. We show that ERI
overcomes the shortcomings of similarity measures—stochasticity
of embeddings and disregard for changes to the ontology—but also
has limitations.

This research is highly relevant, because it allows future investi-
gation into the impact of ontology evolution on embeddings. With
ERI, we can now investigate the learning and prediction of impact
and informing ontology users about the necessity of recalculation
as proposed by Wegmann et al. [29]. Approximating and/or pre-
dicting impact, like attempted by [18] but with similarity measures,
would signal to ontology users if they need to update their current
application and adapt to the new version. If the changes between
versions were not enough to warrant the update, resources can be
saved and used for the next update of the ontology and application.
Depending on the application, only recalculating every other time
could already be highly beneficial, if previously an update was made
every hour. Hence, with ERI, we enable the research into this area,
which could benefit many engineers, applications, and companies.
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