
ORKA: An Ontology for Robotic Knowledge
Acquisition

Mark Adamik1[0000−0002−7977−3617], Romana Pernisch1,2[0000−0001−8590−1817], Ilaria
Tiddi1[0000−0001−7116−9338], and Stefan Schlobach1[0000−0002−3282−1597]

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2 Discovery Lab, Elsevier, Amsterdam, The Netherlands

Abstract. Most autonomous agents operating in the real world use perception
capabilities and reasoning mechanisms to acquire new knowledge of the environ-
ment, where perception capabilities include both the physical sensor devices and
the software-based perception pipelines involved in the process. For autonomous
agents to be able to adjust and reason over their own perception, knowledge of the
sensors and the corresponding perception algorithms is required. We present the
Ontology for Robotic Knowledge Acquisition (ORKA), that models the percep-
tion pipeline of a robotic agent by representing the sensory, algorithmic and mea-
surement aspects of the perception process, thereby unifying the agent’s sensing
with the characteristics of the environment and facilitating the grounding process.
The ontology is based on the alignment between SSN and OBOE, linked to exter-
nal databases as additional knowledge sources for robotic agents, populated with
instances from two different robotic use-cases, and evaluated using competency
questions and comparisons to related ontologies. A proof of concept use-case is
presented to highlight the potential of the ontology.
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1 Introduction

Robots are increasingly used across various sectors due to advancements in AI and
robotics. They range from service robots in restaurants and hospitals through home-
use robots like vacuum cleaners to agricultural robot. Yet, their utility and effectiveness
is hindered by a lack of common-sense knowledge and understanding of the world
[12]. Presently, the common-sense knowledge robots use is implicitly embedded within
specialised control programs designed for various robots and applications.

Fundamentally, the autonomy and behaviour of robotic systems are shaped by their
ability to perceive their surroundings, as many of the decisions these agents make are
based on the interpretation of data acquired through sensors. However, the data acquired
through the sensors is essentially meaningless without the background knowledge that
allows for the interpretation of this information. In order to efficiently organise the data
and transform it into knowledge that could be acted on, the agent needs to have some
prior information about what type of perception capabilities it is equipped with, which
sensors expose them, and what aspects of the environment are observed by them.
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Fig. 1: The three main sources of knowledge for a robotic agent is the pre-programmed
knowledge that the robotic system engineers equipped the robot with; the sensory in-
formation the robot acquires through the sensory data, and external sources the robot
can connect to. The purpose of ORKA is to unify these knowledge sources.

Let us consider a robot equipped with two sensors: a 2D planar LiDAR for depth
sensing and an RGB camera for vision. For a robot to interpret these signals, knowledge
of the robotic engineer is needed to consider that the floating point values returned
by the LiDAR represent distances represented (usually) in units of millimetres, and
that the integer values of the camera represent pixel values corresponding to colour
intensities on three channels. This knowledge, often implicit and only considered by
system designers, is usually not directly available to the robot to reason over, thereby
limiting its potential utility and its adaptability to unforeseen circumstances.

Similarly, considering the perception pipelines designed for these sensors, engineers
are typically knowledgeable about the semantics of an algorithm’s output – e.g. bound-
ing boxes of generic, deep learning-based object recognition algorithms such as Yolo
[27] indicate the location of the object, where the object class label represent the type
of the object and the values represent the certainty of such classification. Outputs of
a specifically-purposed gaze detector algorithm [3] instead indicate the detected face,
as well as the yaw and pitch angles of the detected direction. To enable agents to au-
tonomously process this information and independently select the optimal algorithms
aligned with both the sensory abilities and the task at hand, awareness of their own
perception capabilities is required.

Knowledge-enabled robotics [13] aims at supporting robotic agents to such type of
reasoning using knowledge representation formalisms, to ultimately allow for a shared
understanding between robotics agents and their environments. We distinguish three
fundamental sources of knowledge for robotic agents as depicted in Figure 1: (i) pre-
programmed knowledge that the robot is initially equipped with, and is designed by the
engineers of the robot, also encompassing the knowledge representation and reasoning
abilities such as ontologies or internal simulations [11,33] that robots use to infer new
knowledge; (ii) sensorial knowledge gathered by the sensors and perception algorithms
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that create observations of the environment3; and (iii) the external knowledge that robots
can access from databases [36] and knowledge graphs [14] to further improve their
reasoning abilities. One of the most notable example of the latter source of knowledge is
the Semantic Web, as one of the primary vision of it is to “make the web more accessible
to computers"[6]. The problem of linking of robotic perception to the resources of the
Semantic Web has been identified and formalised in our previous work [4].

While some studies have proposed models that represent parts of such knowledge
in the form of ontologies (e.g. robot capabilities and sensory devices [19,24]), none of
these attempts represent all the above described sources of knowledge, and unify the
knowledge acquisition process of a robotic agent from sensors to understanding the en-
vironment. Furthermore, the represented characteristics of objects are somewhat limited
in these ontologies [5]. With this in mind, we use the Ontology101 methodology [25] to
define the Ontology for Robotic Knowledge Acquisition (ORKA). ORKA ties together
the domains of sensors, perception processes, measurement properties of percepts and
the properties of the perceived objects to jointly represent the domain of robotic per-
ception. The contributions are two-fold. First, we present ORKA, a domain ontology
for robotic knowledge acquisition, as well as the most important design choices made
for it in the form of competency questions. Second, we model the robotic knowledge
acquisition process from sensory data to real world entities, showing with two practical
examples how such ontology-driven representation can benefit different use-cases. To
the best of our knowledge, this is the first attempt to create an ontology that unifies
and ties together the different sources of knowledge and their interrelations in artificial
agents. The ontology and the related resources are available online4.

2 Related Work

One of the most comprehensive knowledge-based robotics framework is KnowRob [33],
which includes the Socio-physical Model of Activities (SOMA) [10], the Semantic
Robot Description Language (SRDL) [19] and RoboSherlock [9,8]. Designed to aid
robots performing manipulation activities in home environments, SOMA presents a
very fine-grained model for objects and their social (e.g. cleaningness) and physical
(e.g. colour) qualities. The SRDL module includes a detailed taxonomy of the different
sensory capabilities, as well as some software categories. RoboSherlock is a cognitive
vision system that provides an image processing-based perception pipeline to accom-
modate different perceptual processes. While KnowRob and its extensions provide an
extensive and more detailed knowledge representing perception, they still lack a fine-
grained taxonomy of characteristics entities can possess, the links of these characteris-
tics to the robot sensory capabilities, and knowledge about the measurement standards
of the sensory devices as well as the algorithms used to acquire these information.

Alternative knowledge-driven approaches include the Perception and Manipula-
tion Knowledge (PMK) framework [24], which represents both object properties and

3 We consider a “perception algorithm” any algorithmic process that results in new observations
about characteristics of objects.

4 https://github.com/Dorteel/orka

https://github.com/Dorteel/orka
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algorithms; the OpenRobots Ontology (ORO) [20], a knowledge management plat-
form allowing cognitive robots to perform reasoning on previously acquired knowl-
edge, and the Ontology-based Unified Robot Knowledge (OUR-K) [21], exhibiting
integrating low-level sensory data with perceptual features (e.g. colour, texture, SIFT
features), which are further associated with concepts and perception algorithms. The
project seems however discontinued and no further details could be explored. There
are some ontologies attempting to link sensory data to higher-level robot capabilities in
specific domains, e.g. the culturally-aware assistive robots in the CARESSES project5,
including objects and qualities such as colour and size, but restricting the perception
modelling to the audio (e.g. speed and pitch of the speech); the OROSU ontology [15]
representing medical devices and their sensing measurements in the robotic surgery do-
main; and the ROSETTA ontology [32], where sensors and sensory characteristics are
designed for industrial robotics tasks.

Other ontologies for sensing outside the robotics domain include the Semantic Sen-
sor Network (SSN) [16] and its extension Sensor, Observation, Sample and Actuator
(SOSA) ontology [17], both describing sensors and their observations, as well as sens-
ing processes according to Semantic Web standards. While both ontologies offer a com-
prehensive overview of the sensory observation processes, they do not provide details
about the specific sensors and corresponding algorithms employed by robots, as well
regarding the characteristics of the environment the measurements are obtained about.
The RDF Data Cube Vocabulary [2] allows to describe statistical data and their mea-
surements, but places a greater emphasis on statistical data, and lacks the capabilities
to describe sensory data accurately. Similarly, the Ontology of units of Measure and
related concepts (OM) [29] provides a vocabulary to tie together different measurement
units, with a focus on science and engineering [28]. The Extensible Observation On-
tology (OBOE) [22] describes ecological observations of entities using measurement
standards and characteristics. Its structure of the observations is easily transferable to
the robotics domain, and the characteristics described in the ontology are quite compre-
hensive.

As shown, various ontologies incorporate aspects relevant to our problem (e.g. sen-
sors, processes, characteristics), but none fully includes a suitable representation con-
necting the characteristics of an environment with the sensory devices used by a robot.
Additionally, perception algorithms are hardly represented, and the algorithms’ capa-
bilities and the semantics of their outputs is missing. These ontologies also do not make
use of external knowledge sources. To overcome these limitations, we present the On-
tology for Robotic Knowledge Acquisition (ORKA) in the next section.

3 Ontology for Robotic Knowledge Acquisition

Following the Ontology101 [25] Ontology Engineering methodology, we start by defin-
ing the domain, purpose and intended use of the ontology articulated through a list of
competency questions. Subsequently, we evaluate some of the ontologies of Section 2
for possible re-use. Finally, we present the structure of ORKA, as well as the Semantic
Web Rule Language (SWRL) rules that augment its reasoning capabilities.

5 http://caressesrobot.org/ontology/

http://caressesrobot.org/ontology/
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3.1 Domain and Scope

The ontology serves as a shared vocabulary for researchers and engineers working in the
domain of robotic perception and cognitive robotics, and defines the interrelations be-
tween the concepts used to describe sensors, subjects of sensors and the algorithms that
operate on the sensory data. ORKA also includes an integration of additional knowl-
edge sources, that could be used to improve the perception of the autonomous agent
with common-sense information (as shown later in Section 5). The domain represented
by ORKA is the complete process of knowledge acquisition for autonomous robotic
agents, with a special focus on the link between robotic perception and environment.

We show the primary components the ontology should encompass using a few prac-
tical examples. An ideal ontology would allow autonomous robotic agents to consider
that the sensors provide information about specific aspects of the environment, and the
entities contained within. For example, some sensors such as IMU-s or encoders provide
information about the state of the robot, and not of the objects it perceives; cameras pro-
vide information about objects that are detected, but not their measurements; LiDARs
provide information about distances, but not colours. At the level of algorithms, not
all sensory data and processes need to be considered at all times. For example, gaze-
detection algorithms would only be required in contexts where a human is present, and
sensors used for mapping are usually not required during manipulation tasks. Defin-
ing contexts for the different sensory applications could therefore help the agent decide
which of the sensory data is relevant for the given task. Additionally, algorithms come
in different model sizes, and ideally an agent should have the knowledge to deploy the
most suitable model depending on the task at hand. Finally, in order to give a meaning
to the sensor readings in the form of entities of the real-world, it is important that the
measurement systems are also specified within the ontology. These entities can be also
aligned with external, common-sense knowledge sources to acquire further knowledge:
e.g. an object recognition algorithm returning contradicting or incorrect information
could use a knowledge source such as WikiData [35] and DBpedia [7] to augment the
object detection algorithm with the necessary information.

Restricting scope, we limit our investigation to the perception of physical objects,
and refer the inclusion of other entities, such as events and actions, to future work.

Competency Questions. Using the above defined use-cases and scope limitations, we
derive a set of competency questions to be answered by ORKA.

CQ1: Given a robotic agent, what sensors and perception algorithms is it equipped
with?

CQ2: Which characteristics of the environment do the sensors and their associated
algorithms from CQ1 observe?

CQ3: What units of measurement is the data from the sensors and perception algo-
rithms in CQ1 provided in?

CQ4: What observable and observed characteristics do given entities possess?
CQ5: What characteristics do the sensors from CQ1 possess?
CQ6: What characteristics do the algorithms from CQ1 possess?
CQ7: Which algorithm is the most suitable for a given context?
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CQ8: What external knowledge sources are available to the robot and what do they
describe?

CQ9: What characteristics of given entities are described in the external knowledge
sources?

CQ1-3 define the foundational concepts the ontology aims to connect, namely the sen-
sors, algorithms, the characteristics, and the measurement standards. CQ4 focuses on
the characteristics which are implied by the existence of entities. CQ5 and CQ6 aim
to describe the characteristics of sensors and algorithms respectively. Derived from the
use-cases described earlier, these competency questions focus on the characteristics that
are relevant to the knowledge acquisition process. This is reflected by CQ7, which re-
quires the characteristics of CQ5 and CQ6 to determine the utility of the sensors and
algorithms in a given context. As the comprehensive representation of a context is out-
side of the current scope of ORKA, the simplified representation of context includes (i)
a task at hand, (ii) the perceived objects, and (iii) the objects required for completing
the task. We disregard the particular task and instead use the required objects as a sub-
stitute for it. CQ8 and CQ9 address the third source of knowledge described in Section
1, i.e. the inclusion of external sources of knowledge in the knowledge-acquisition pro-
cess. CQ8 aims to describe the knowledge sources available to the robot, whereas CQ9
focuses on the potential knowledge that these sources could offer.

3.2 Re-using existing ontologies

With the domain and scope defined, we consider the re-use of existing ontologies. As
mentioned in Section 2, existing ontologies allow the modelling of sensors [16,17,19],
observations [16,17,22] or tasks and activities [33], but none is comprehensive and flex-
ible enough represent our robotic knowledge acquisition process sufficiently.

The sources that describe most of the required components are the SSN [16] on-
tology when considered together with the system capabilities module of SSN, which
aims at extending SSN to capture the capabilities of sensors and measurement. The
choice for reusing SSN was further reinforced with the fact that an alignment module
is provided for OBOE [22], which in turn describes the characteristics the observations
concern, and the associated units of measurements. Although some components are not
included in the alignment of SSN and OBOE (i.e. the specific sensors, the coupling
between the sensors and the measured characteristics, the specific algorithms that com-
prise the perception pipelines, the external knowledge sources, etc.), it is deemed as the
best candidate to serve as a backbone of ORKA.

3.3 Core structure

We followed a top-down approach, starting with the definitions of the most general
concepts. These considerations resulted in a core ontology (Figure 2), specified below.

Robots & Sensors. In accordance with SSN, in ORKA robots are considered a special
class of sosa:Platform, that host sosa:Sensor devices and have specific sosa:Procedures
implemented on. To address CQ1, sensors are also defined as a subclass of the oboe:Entity
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Fig. 2: A simplified view of the core classes of the ORKA ontology as well as the OBOE
and SSN alignment.

class, and sensor instances are linked to an instance of the orka:Robot class using the
sosa:hosts predicate. SSN is extended with a detailed classification of sensors fol-
lowing [30]. A sensor can be either a ProprioceptorSensor, i.e. a device that can
measure different characteristics related to the body of the agent that equips the sensors,
or an ExteroceptorSensor, which measures the external environment. The former in-
cludes encoders that measure the position of the motor devices, or sensors that measure
the orientation or acceleration of the robot, such as tilt sensors or IMU devices. Using
this classification the robot can infer that the sensory information concerns robots:

ProprioceptorSensor ⊑ ∀observesCharacteristic.(∀characteristicFor.Robot)

An additional classification is provided based on the characteristic of the environment
or the objects that they measure (e.g. position, heading, etc). As an example, the sensory
activation of a bumper sensor always implies the Location characteristic of an entity.

Bumper ⊑ ∀observesCharacteristic.Location

In determining the proprioception abilities of sensors, some adjustments are made. For
example, some sensors indicated as exterioceptors in [30], such as compass and en-
coders, are modelled as proprioceptors in ORKA, as they indicate the orientation or
position of the robot (or components of the robot).

To be able to address CQ5, the most important characteristics that influence the
knowledge acquisition capabilities of the sensors are inserted as specific data proper-
ties. Some of these properties, such as range, resolution, accuracy, precision
are included in the system capabilities module of SSN, while others, such as sampling
rate of the sensors needed to be added. These properties are appended directly to the
bottom levels of the Sensor class, where the specific models of sensors are represented,
as general class axioms. Simpler sensors such as a thermometer or a bumper provide the
characteristics of the entity without the necessity of a specialised perception algorithm
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to be utilised. Sensors that provide more complex information about the environment,
such as a camera, require a specialised (often computer vision) algorithm, here collec-
tively called Procedures, that allows for the observation of additional characteristics
that the sensor does not provide on its own.

Procedures. Procedures in perception pipelines, acting on sensor data, significantly
affect autonomous agents’ capabilities. To capture this impact, we incorporate both al-
gorithms and deep learning models together with their properties into the ontology. In
order to address CQ6, certain characteristics (i.e. model size, inference speed, memory
usage) and model versions of existing algorithms are included. For ObjectDetection
algorithms, we currently use the official values of YoloV56 as implemented on our Lo-
coBot mobile robot, and represent these as data property assertions on the class level,
in the form of general class axioms. These characteristics also play a role in answering
CQ7. Depending on the context, models with higher detection speed could be preferred
in some scenarios, whereas higher precision could be required in others. In the current
version of the ontology, a greater emphasis is placed on the ComputerVisionAlgorithm
class, which follows an application-based taxonomy [18]. Future work will be aimed at
expanding it to a wider variety of algorithms.

Entity. The entities correspond to the phenomena being observed. In the case of robotic
agents situated in a real-world environment, the properties of these entities could help
distinguish between individuals, and address cognitive robotics problems such as ob-
ject permanence and occlusion. Following OBOE, in ORKA entities are the main sub-
jects of the observations, holding observable and inherent characteristics that describe
the objects (CQ4) through the hasCharacteristic predicate. In ORKA, instances of
Sensor and Robot are also considered as entities.

Observations & Measurements. Observations are made of entities belonging to the
Entity class. In case of a sensor, an Measurement is produced that serves as an input
to a Procedure. In the case of an object detection algorithm, the observation con-
cerns a single entity, which has multiple corresponding Measurements involving the
label and bounding-box that the procedure provides. Measurements concern a single
Characteristic. A precision (where applicable) can also be assigned, as it can be
inferred from the precision characteristics of the sensor device performing the mea-
surement. The measurements also correspond to a measurement standard.

Measurement Standards. The sensory knowledge acquisition process starts with the
recording of the observations of the physical world. In order to address CQ3, the mea-
surement units contained within the ontology are adopted from OBOE. However, as
OBOE does not include some units that are relevant for robotic perception (e.g. pixel
values or binary events such as a switch or bumper), ORKA also incorporates these as
measurement standards. Finally, instead of organising units into base units and derived
units as in [22,29], ORKA defines a hierarchy of unit classes based on the characteris-
tics they define.

6 https://pytorch.org/hub/ultralytics_yolov5/

https://pytorch.org/hub/ultralytics_yolov5/
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The oboe:usesStandard data property is used to link measurement standards to
their corresponding measurements. In order to derive the measurement standards asso-
ciated with the different sensors and procedures, the current implementation of ORKA
uses SWRL rules [1]. The reason behind this modelling choice is that sensors are diffi-
cult to describe in general terms regarding their outputs, as different implementations of
the same sensor type might produce outputs corresponding to different measurements.
For example, a specific model of ultrasonic sensor might be implemented so that its out-
put is the raw data in terms of time taken for the sound to reflect, while another model
might also implement the conversion from the time taken to estimate the distance. Fur-
thermore, some procedures, such as object recognition algorithms, produce multiple
measurements corresponding to different units of measure, and therefore a single unit
cannot be associated with a single procedure.

Characteristics. Given CQ2, a core aspect of ORKA is to represent characteristics of
an object, that could be considered common-sense (i.e. where an object was observed,
when it was observed or what it looks like). Given the lack of a comprehensive cata-
logue of the specific qualities (such as size, colour, shape, weight, etc.) that a particular
endurant might have [23], we use three main sources of characteristics to include in
ORKA. Firstly, we adopt the Characteristics defined in OBOE. Secondly, we exam-
ine the set of current perception algorithms, and sensors as well as their measurements
to identify some of the main object characteristic to include in ORKA. This includes
ObjectType (corresponding to the label), and Location as the output of the YOLO
algorithm, or Size and Colour as the output of the point cloud processing algorithm
that processes the images produced by the depth camera. This category also includes
the measurement units discussed above, where we consider the SI quantity dimensions
described in [34] (e.g. length, mass, time), and their derived characteristics (e.g. height,
width, depth, weight, age, etc.). Lastly, we include some of the properties that external
knowledge sources utilise to characterise objects, and which could be acquired from an
external knowledge base. Specifically, WikiData [35] was used to examine additional
characteristics, such as material, density, hardness and names of different shades of
colours.

Observable characteristics are divided into two main categories: those related to ob-
jects and those related to the environment, influencing object perception (e.g. brightness
impacting colour). The categories include the SpatialCharacteristic class, which
outlines an object’s location and orientation within a specific reference frame, and the
VisualCharacteristic class, which defines an object’s colour and pattern. This di-
vision suggests that robots without visual sensors should not be assigned tasks requiring
the observation of visual characteristics. For example, a TurtleBot with only LiDAR is
not suited for tasks involving visual characteristics, and its tasks should be adjusted or
performed by robots equipped with the necessary sensors.

External Knowledge Sources. To be able to answer CQ8 and CQ9, external knowl-
edge sources, and links to these sources should be described. Currently, we limit our
investigation to common-sense databases part of the Semantic Web that could be use-
ful for robotic agents to operate in an environment, and use WikiData and DBpedia
to serve as a proof-of-concept external knowledge graphs. As these sources contain
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information about general characteristics of the class of the entities being observed
(e.g. colour, material, weight, etc.), but not about specific instances of entities that exist
around the robotic agent, links are established between the characteristics included in
ORKA and their counterpart in the external knowledge source. We link the resources
using the hasDBpediaURI and hasWikiDataURI data properties. Furthermore, the
sparqlEndpoint data property is used to provide some information on how to query
these external knowledge sources. In the current version of ORKA, the corresponding
links have been established manually. Automatic entity linking procedures could be
considered in future work.
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Fig. 3: A depiction of a TurtleBot 3 Burger1 (top) and a LocoBot WX250s2 (bottom) and
their sensors, together with instances of sensory readings represented in the ontology.
As the gyroscope of the TurtleBot is a proprioceptor, a SWRL rule automatically derives
that the observations correspond to the entity that hosts the sensor. For the purposes of
this paper, the manipulator of LocoBot is excluded from the consideration.

Individuals. The last step is the population of the ontology with individuals. We con-
sider two mobile robots and their perception abilities to be instantiated: a LocoBot
WX250s, and a TurtleBot3 Burger. The two robots are equipped with a total of 21
sensors and four procedures, a YoloV5 object detector, a gaze detector based on L2CS-
Net [3], a point cloud segmentation algorithm and a Simultaneous Localisation and
Mapping (SLAM) algorithm. A depiction of the robots as well as the corresponding
sensors and an example of the sensory process can be seen in Figure 3. For every sensor

1 https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
2 https://www.trossenrobotics.com/locobot-wx250.aspx

https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
https://www.trossenrobotics.com/locobot-wx250.aspx
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and algorithm within the ontology, instances of test observations have been added to
demonstrate and validate the competency questions.

3.4 SWRL Rules

To address CQ4 and CQ7, ORKA needs to infer certain relationships, such as which
algorithms can detect the ObjectType and other characteristics of the given entities
(CQ4) or which entities are required for a context (CQ7). As OWL-DL does not allow
for the desired expressivity, we use SWRL rules [1] to infer the required information.
The rules can be divided into rules concerning sensory data, and rules concerning pro-
cedures.As an example for the former, if the sensor is a ContactSensor and produces
an Observation with a Measurement ofCharacteristic Location, then it should
also be inferred that, since the measurement range of any ContactSensor is 0, the
value of the location should be equated with the given sensor’s Location. An example
for the latter is the rule concerning CQ7, which aids in the deduction of the canDetect
object property between a Procedure and an Entity. This involves establishing a
connection between an entity required for a task, instantiated as an instance, and po-
tential algorithms capable of completing the task by detecting the specified entity. The
complete list of implemented SWRL rules with comments is available in the online
repository7.

4 Evaluation

The current version of ORKA contains 443 classes, 74 object properties and 39 data
properties. The ontology is populated with 54 instances, representing the two robots,
their capabilities, observations and measurements, as well as some of the observed en-
tities. The competency questions that articulate the requirements of the ontology are
evaluated using several SPARQL queries and the Pellet reasoner [31] . The queries were
evaluated using the individual instances of the two robotic agents presented in Section
3. A complete list of the queries as well as the results can be found in the repository.

Listing 1 illustrates the query for CQ1 which returns the sensors a robotic agent is
equipped with, and the implemented perception algorithms. The query is used to give a
complete list of the sensory knowledge acquisition capabilities of any robotic agent.

SELECT ?s ?r ?a
WHERE { ?r sosa:hosts ?s .

?a orka:implementedOn ?r}

Listing 1: Query corresponding to CQ1.

In practice, the list could be used by other robotic agents in a multi-agent setting,
or by a user to assess which robot might be appropriate in which situation. The queries

7 https://github.com/Dorteel/orka

https://github.com/Dorteel/orka
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corresponding to CQ3 and CQ8 follow a similar pattern, with entities being returned
that have a hasMeasurementStandard and describedBy properties defined respec-
tively. Listing 2 presents a more complex query corresponding to CQ2, and returns
the individuals of the class Characteristic corresponding to sensors and procedures
answered to CQ1.

SELECT ?item ?charType
WHERE { {?a orka:implementedOn ?r .

?a orka:observesCharacteristic ?c .
?c a ?charType .
BIND(?a AS ?item)}

UNION {?r sosa:hosts ?s .
?s orka:observesCharacteristic ?c .
?c a ?charType .
BIND(?s AS ?item) }}

Listing 2: Query for the characteristics measured by sensors and algorithms (CQ2).

When evaluating competency questions CQ4-6, the sub-properties of hasObserva-
bleCharacteristic, hasSensorCharacteristic and hasAlgorithmCharacteri-
stic are queried respectively. In a practical scenario, specific characteristics such as
VisualCharacteristics of entities, maxRange of a sensor or DetectionSpeed of
a procedure would be the subject of the query.

To determine the context in which certain perception algorithms are better than
others, as per CQ7, two simple contexts are presented. A HRI-Dialogue context has
a human face as a required entity, whereas a Fetch-Object context has the object to
be fetched as the required entity. The query of Listing 3 formulates this question and
returns the entities that match the description of the context, except where none of
the algorithms can detect the required entity. Context requirements can be modified to
select among algorithm characteristics, such as opting for an object detector version
that prioritises higher detection speed over accuracy.

SELECT ?c ?e (COALESCE(?a, "None") AS ?alg)
WHERE { ?c orka:hasRequiredEntity ?e .

OPTIONAL {
?a orka:implementedOn ?r .
?a orka:canDetect ?e .}}

Listing 3: Query used to evaluate CQ7.
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Table 1: Ontology comparison with respect to CQ1 – CQ9. As KnowRob represents an
infrastructure consisting of multiple ontologies, the aggregated capabilities are consid-
ered. Checkmarks in parentheses indicate partial answering of CQ-s.

Ontology CQ1 CQ2 CQ3 CQ4 CQ5 CQ6 CQ7 CQ8 CQ9
KnowRob [33] ✓ ✓ ✓ ✓ ✓ ✓
PMK [24] ✓ ✓ ✓
CARESSES ✓
ROSETTA [32] ✓ ✓ ✓ ✓ ✓ ✓
ORO [20] ✓
OROSU [26] ✓
SSN [16] ✓ ✓ ✓ ✓
ORKA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (✓)

CQ9 necessitates listing the characteristics of entities from an external knowledge
source, useful for correcting mislabelled entities by comparing the detected entity’s
characteristics with those described in the external source. The ontology is not able to
evaluate this competency question by relying only on SPARQL queries, as it would re-
quire a dynamic construction of URI’s within the query. However, using the describedBy
property as in CQ8 allows for the access of these external resources using an additional
Python script that incorporates SPARQL queries.

Comparison. A comparison was performed to evaluate ORKA with respect to the other
publicly available ontologies. Table 1 shows the coverage of the CQs not just of ORKA
(last row), but also of some of the related ontologies described in Section 2. ORKA
answers all but the last CQ completely, making it the most fitting ontology for the
envisioned domain and scope. KnowRob [33] and ROSETTA [32] is able to answer six
CQs, making them the next best-performing ontologies. PMK [24] and SSN/SOSA [17]
can each answer four CQs, and ORO [20], OROSU [15] and CARESSES are only able
to address one CQ. With the low coverage of CQs by these domain-specific ontologies,
creating alignments with ORKA to extend the knowledge acquisition capabilities can be
envisioned, which could ultimately serve as a unifying vocabulary for robot capabilities.

Finally, we compare ORKA and the relevant domain ontologies in terms of size.
Table 2 includes the number of classes and instances for the sensors, algorithms, char-
acteristics, measurement units, as well as sensor and algorithm characteristics that were
considered within each ontology. These values are acquired using the DL Query plugin
of the Protégé ontology development software.

Recall that ORKA is in its preliminary version, and the number of its individuals
is expected to increase. We consider the ones we have enough to prove the ontology
generalisability to a further extent. Further robot scenarios outside of the ones described
in this paper are left for future work.

Threats to Validity. The competency questions that guided the development process
were driven by the use-cases, and do not yet cover the entirety of the robotic knowl-
edge acquisition domain. Currently, ORKA is limited to the individuals representing
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Table 2: Number of classes and instances (in parentheses) of ORKA and comparison
ontologies.

KnowRob PMK CARESSES ROSETTA ORO OROSU ORKA
[33] [24] [32] [20] [15] (ours)

Sensors 21 4 (4) - 22 (69) - 4 (4) 37 (18)
Algorithms 63 14 (7) - 45 (61) - 13 (5) 22 (4)
Characteristics 27 47 (40) 1 78 (245) 3 (13) - 120 (11)
Measurement Units - - - 2 (2) - - 17
Sensor Characteristics 6 2 (2) - 13 (86) - - 9
Algorithm Characteristics 1 - - - - - 8
External Sources - - - - - - 2

the two robots and their associated sensory devices. For the ontology to be more com-
plete, more links between characteristics and the sensor devices outside of the individ-
uals in the ontology should be included. Moreover, the comparison only considers the
freely available versions of the considered ontologies. More up-to-date versions could
appear that would render the comparison out-of-date. ORKA’s interoperability could
be improved by introducing alignment modules with ontologies within and outside the
domain. Lastly, our design methodology does not include evaluation with external val-
idators, which also poses a threat to the validation of ORKA. Yet, we show how ORKA
can support the well-known issue of robotics knowledge-driven perception, enabling
further studies and first prototypes in the future.

5 Example Use-Case

This section provides a proof-of-concept with ORKA, where a robot detects different
objects, and using an external knowledge graph (i.e. WikiData) verifies and corrects
the label provided by the object detection algorithm, performing the perceived-entity
linking task [4].

The example concerns the task of fetching an orange for the user from a basket.
With the use of a camera, an object detection algorithm and a colour detection pro-
cedure, an observation graph is produced containing the entities and their recognised
properties. As the fetching task contains an object that is recognisable with several of
the available object detection algorithms, the one with the fastest inference speed is
chosen. However, as the object detection algorithm incorrectly recognises two of the
fruits (a grapefruit and a lemon) as an orange, a colour detection procedure is initiated
to further distinguish the objects. The colour detection algorithm utilises a modified
MASK-RCNN segmentation algorithm to calculate the mean pixel value for each seg-
ment, and consults ORKA to retrieve the corresponding closest available colour.

The robot associates each entity with a colour, and uses the corresponding colour
property (wdt:P462) of WikiData to refer to the colour of an orange (accessed through
the hasWikiDataURI data property) and therefore disambiguate which entity has the
colour of an orange as described in WikiData. An overview of the process as well as the
outputs are shown in Figure 4. This example serves as a proof-of-concept, showcasing
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Fig. 4: A simplified depiction of the robot view, the created observation graphs concern-
ing the entities, and the matched property. As only one entity has the colour matching
the description found in the external knowledge source, the entity is chosen.

the utility and potential of ORKA to represent the knowledge and reasoning capabilities
of the agents.

6 Conclusion and Future Work

We have presented the Ontology for Robotic Knowledge Acquisition (ORKA), a model
that represents the sensory and algorithmic capabilities of robotic agents with regard to
the perception of the environment. We have shown that the model is capable of cap-
turing several characteristics of objects, and allows for the linking of object classes and
characteristics to external knowledge sources. The reasoning of the model has been rein-
forced with SWRL rules to allow for the automatic inference of characteristics captured
by the algorithms. The model is evaluated using the competency questions formulated
as SPARQL queries, and a proof of concept is presented that showcased the potential
of ORKA. In the future, we intend to extend the model to address problems such as the
representation of time, using e.g. multiple descriptions of the same location. In order
to promote re-usability and compatibility, alignment modules will be provided to allow
other knowledge-driven robotic systems to use and integrate ORKA. A modularisation
of ORKA will be introduced, which allows users and developers to focus on the as-
pects relevant to their respective applications. Furthermore, we plan to use ORKA in
combination with physical robots, and test the ontology reasoning capabilities as more
observations and measurements are made. We encourage experts and users in the field
of knowledge representation and robotics to use and revise our model so that ORKA
can become a community effort in the future.



16 M. Adamik et al.

References

1. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
https://www.w3.org/submissions/SWRL/

2. The RDF Data Cube Vocabulary. https://www.w3.org/TR/vocab-data-cube/ (2014)
3. Abdelrahman, A.A., Hempel, T., Khalifa, A., Al-Hamadi, A., Dinges, L.: L2CS-Net :

Fine-Grained Gaze Estimation in Unconstrained Environments. In: 2023 8th International
Conference on Frontiers of Signal Processing (ICFSP). pp. 98–102 (Oct 2023). https:
//doi.org/10.1109/ICFSP59764.2023.10372944

4. Adamik, M., Pernisch, R., Tiddi, I., Schlobach, S.: Advancing robotic perception with
perceived-entity linking. In: The Semantic Web - ISWC 2024 - 23rd International Semantic
Web Conference, Baltimore, The United States of America, November 11-15, 2024, Pro-
ceedings. Lecture Notes in Computer Science, Springer (2024)

5. Adamik, M., Schlobach, S.: Towards a definition and conceptualisation of the perceived-
entity linking problem. In: RobOntics 2023 Ontologies for Autonomous Robotics 2023.
CEUR Workshop Proceedings, CEUR-WS (2023)

6. Antoniou, G., Groth, P., van Harmelen, F., Hoekstra, R.: A Semantic Web Primer, 3rd Edi-
tion. MIT Press (2012)

7. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A Nu-
cleus for a Web of Open Data. In: Aberer, K., Choi, K.S., Noy, N., Allemang, D., Lee, K.I.,
Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) The Semantic Web. pp. 722–735. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

8. B’alint-Bencz’edi, F., Worch, J.H., Nyga, D., Blodow, N., Mania, P., M’arton, Z., Beetz,
M.: RoboSherlock: Cognition-enabled Robot Perception for Everyday Manipulation Tasks.
ArXiv (Nov 2019)

9. Beetz, M., Balint-Benczedi, F., Blodow, N., Nyga, D., Wiedemeyer, T., Marton, Z.C.: Ro-
boSherlock: Unstructured information processing for robot perception. In: 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA). pp. 1549–1556. IEEE, Seattle,
WA, USA (May 2015). https://doi.org/10.1109/ICRA.2015.7139395

10. Beßler, D., Porzel, R., Pomarlan, M., Vyas, A., Höffner, S., Beetz, M., Malaka, R., Bateman,
J.: Foundations of the Socio-physical Model of Activities (SOMA) for Autonomous Robotic
Agents (Nov 2020). https://doi.org/10.48550/arXiv.2011.11972

11. Blum, C., Winfield, A.F.T., Hafner, V.V.: Simulation-based internal models for safer robots.
Frontiers Robotics AI 4, 74 (2017). https://doi.org/10.3389/FROBT.2017.00074,
https://doi.org/10.3389/frobt.2017.00074

12. Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in artificial
intelligence. Communications of the ACM 58(9), 92–103 (Aug 2015). https://doi.org/
10.1145/2701413

13. Engel, U. (ed.): Robots in Care and Everyday Life: Future, Ethics, Social Acceptance.
SpringerBriefs in Sociology, Springer International Publishing, Cham (2023). https://
doi.org/10.1007/978-3-031-11447-2

14. Fischer, L., Hasler, S., Deigmoller, J., Schnurer, T., Redert, M., Pluntke, U., Nagel, K., Sen-
zel, C., Ploennigs, J., Richter, A., Eggert, J.: Which tool to use? Grounded reasoning in ev-
eryday environments with assistant robots. Proceedings of the 11th International Workshop
on Cognitive Robotics (2018)

15. Gonçalves, P.J., Torres, P.M.: Knowledge representation applied to robotic orthopedic
surgery. Robotics and Computer-Integrated Manufacturing 33, 90–99 (2015). https://
doi.org/https://doi.org/10.1016/j.rcim.2014.08.014, citation Key: orosu

https://doi.org/10.1109/ICFSP59764.2023.10372944
https://doi.org/10.1109/ICFSP59764.2023.10372944
https://doi.org/10.1109/ICFSP59764.2023.10372944
https://doi.org/10.1109/ICFSP59764.2023.10372944
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1109/ICRA.2015.7139395
https://doi.org/10.1109/ICRA.2015.7139395
https://doi.org/10.48550/arXiv.2011.11972
https://doi.org/10.48550/arXiv.2011.11972
https://doi.org/10.3389/FROBT.2017.00074
https://doi.org/10.3389/FROBT.2017.00074
https://doi.org/10.3389/frobt.2017.00074
https://doi.org/10.1145/2701413
https://doi.org/10.1145/2701413
https://doi.org/10.1145/2701413
https://doi.org/10.1145/2701413
https://doi.org/10.1007/978-3-031-11447-2
https://doi.org/10.1007/978-3-031-11447-2
https://doi.org/10.1007/978-3-031-11447-2
https://doi.org/10.1007/978-3-031-11447-2
https://doi.org/https://doi.org/10.1016/j.rcim.2014.08.014
https://doi.org/https://doi.org/10.1016/j.rcim.2014.08.014
https://doi.org/https://doi.org/10.1016/j.rcim.2014.08.014
https://doi.org/https://doi.org/10.1016/j.rcim.2014.08.014


ORKA: An Ontology for Robotic Knowledge Acquisition 17

16. Haller, A., Janowicz, K., Cox, S.J., Lefrançois, M., Taylor, K., Le Phuoc, D., Lieberman, J.,
García-Castro, R., Atkinson, R., Stadler, C.: The modular SSN ontology: A joint W3C and
OGC standard specifying the semantics of sensors, observations, sampling, and actuation.
Semantic Web 10(1), 9–32 (Dec 2018). https://doi.org/10.3233/SW-180320

17. Janowicz, K., Haller, A., Cox, S.J.D., Phuoc, D.L., Lefrancois, M.: SOSA: A Lightweight
Ontology for Sensors, Observations, Samples, and Actuators. Journal of Web Semantics 56,
1–10 (May 2019). https://doi.org/10.1016/j.websem.2018.06.003

18. Khanday, N.Y., Sofi, S.A.: Taxonomy, state-of-the-art, challenges and applications of visual
understanding: A review. Computer Science Review 40, 100374 (May 2021). https://
doi.org/10.1016/j.cosrev.2021.100374

19. Kunze, L., Roehm, T., Beetz, M.: Towards semantic robot description languages. In: 2011
IEEE International Conference on Robotics and Automation. pp. 5589–5595 (May 2011).
https://doi.org/10.1109/ICRA.2011.5980170

20. Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: Oro, a knowledge man-
agement platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 3548–3553 (2010). https://doi.org/
10.1109/IROS.2010.5649547

21. Lim, G.H., Suh, I.H., Suh, H.: Ontology-Based Unified Robot Knowledge for Service
Robots in Indoor Environments. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on 41, 492–509 (Jun 2011). https://doi.org/10.1109/
TSMCA.2010.2076404

22. Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An ontology for
describing and synthesizing ecological observation data. Ecological Informatics 2(3), 279–
296 (Oct 2007). https://doi.org/10.1016/j.ecoinf.2007.05.004

23. Masolo, C., Borgo, S.: Qualities in formal ontology (09 2010)
24. Mohammed Diab, Aliakbar Akbari, Muhayy Ud Din, Jan Rosell: PMK—A Knowl-

edge Processing Framework for Autonomous Robotics Perception and Manipulation.
https://www.mdpi.com/1424-8220/19/5/1166 (2019)

25. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First
Ontology (2001)

26. Prestes, E., Fiorini, S., Carbonera, J.: Core Ontology for Robotics and Automation (Sep
2014)

27. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-
time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 779–788. IEEE Com-
puter Society (2016). https://doi.org/10.1109/CVPR.2016.91, https://doi.org/
10.1109/CVPR.2016.91

28. Rijgersberg, H., Wigham, M., Top, J.L.: How semantics can improve engineering processes:
A case of units of measure and quantities. Advanced Engineering Informatics 25(2), 276–287
(2011). https://doi.org/https://doi.org/10.1016/j.aei.2010.07.008

29. Rijgersberg, H., Van Assem, M., Top, J.: Ontology of units of measure and related concepts.
Semantic Web 4(1), 3–13 (2013). https://doi.org/10.3233/SW-2012-0069

30. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer (2008), http:
//dx.doi.org/10.1007/978-3-540-30301-5

31. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Journal of Web Semantics 5(2), 51–53 (Jun 2007). https://doi.org/10.1016/j.
websem.2007.03.004

32. Stenmark, M., Malec, J.: Knowledge-based instruction of manipulation tasks for industrial
robotics. Robotics and Computer-Integrated Manufacturing 33, 56–67 (Jun 2015). https:
//doi.org/10.1016/j.rcim.2014.07.004, citation Key: rosetta

https://doi.org/10.3233/SW-180320
https://doi.org/10.3233/SW-180320
https://doi.org/10.1016/j.websem.2018.06.003
https://doi.org/10.1016/j.websem.2018.06.003
https://doi.org/10.1016/j.cosrev.2021.100374
https://doi.org/10.1016/j.cosrev.2021.100374
https://doi.org/10.1016/j.cosrev.2021.100374
https://doi.org/10.1016/j.cosrev.2021.100374
https://doi.org/10.1109/ICRA.2011.5980170
https://doi.org/10.1109/ICRA.2011.5980170
https://doi.org/10.1109/IROS.2010.5649547
https://doi.org/10.1109/IROS.2010.5649547
https://doi.org/10.1109/IROS.2010.5649547
https://doi.org/10.1109/IROS.2010.5649547
https://doi.org/10.1109/TSMCA.2010.2076404
https://doi.org/10.1109/TSMCA.2010.2076404
https://doi.org/10.1109/TSMCA.2010.2076404
https://doi.org/10.1109/TSMCA.2010.2076404
https://doi.org/10.1016/j.ecoinf.2007.05.004
https://doi.org/10.1016/j.ecoinf.2007.05.004
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/https://doi.org/10.1016/j.aei.2010.07.008
https://doi.org/https://doi.org/10.1016/j.aei.2010.07.008
https://doi.org/10.3233/SW-2012-0069
https://doi.org/10.3233/SW-2012-0069
http://dx.doi.org/10.1007/978-3-540-30301-5
http://dx.doi.org/10.1007/978-3-540-30301-5
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.rcim.2014.07.004
https://doi.org/10.1016/j.rcim.2014.07.004
https://doi.org/10.1016/j.rcim.2014.07.004
https://doi.org/10.1016/j.rcim.2014.07.004


18 M. Adamik et al.

33. Tenorth, M., Beetz, M.: KnowRob: A knowledge processing infrastructure for cognition-
enabled robots. The International Journal of Robotics Research 32(5), 566–590 (Apr 2013).
https://doi.org/10.1177/0278364913481635

34. Thompson, A.: Guide for the Use of the International System of Units (SI)
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